|Table of Contents|

A New Hierarchical Hybrid Clustering Method(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2003年01期
Page:
22-25
Research Field:
Publishing date:

Info

Title:
A New Hierarchical Hybrid Clustering Method
Author(s):
Ma Baoping
Department of Control Science and Engineering, Nanjing Normal University, 210042, Nanjing, PRC
Keywords:
clustering sel-f organizing neural network entropy
PACS:
O235
DOI:
-
Abstract:
A new hierarchical hybrid clustering method is proposed to overcome the disadvantage of fuzzy clustering algorithm. By adopting the method, with the sel-f organizing network used to have the preliminary acquisition of the character of data, the data was then clustered by using an algorithm based on entropy. As a result, the efficiency and validity of clustering can be enhanced.

References:

[ 1] Linkens D A, M Y Chen. Input selection and partition validation for fuzzy modeling using neural network[ J] . Fuzzy Sets and Systems,1999, 107( 3) : 299~ 308.
[ 2] Yao J, Dash M, Tan S T, et al. Entropy- based fuzzy clustering and fuzzy modeling[ J] . Fuzzy Sets and Systems, 2000, 113( 4) :381~ 388.
[ 3] Shimoji S, Lee S. Data clustering with entropical scheduling[ C] . Proceeding of IEEE Conference on Fuzzy Systems, 1994, 10: 2423~ 2428.
[ 4] Sugeno M, Yasukawa T. A fuzzy log ic based approach to qualitative modeling[ J] . IEEE Trans Fuzzy Systems, 1993, 1( 1) : 7~ 31.
[ 5] 马宝萍. 模糊建模与神经网络控制的研究及其在循环流化床锅炉中的应用[ D] . 东南大学, 2001.

Memo

Memo:
-
Last Update: 2013-04-29