|Table of Contents|

Construction of a Class of Multi-output Bent Functions(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2005年02期
Page:
46-49
Research Field:
Publishing date:

Info

Title:
Construction of a Class of Multi-output Bent Functions
Author(s):
LIU Zhigao 12ZHANG Futai1XU Qian1
1.School of Mathematics and Computer Science, Nanjing Normal University, Jiangsu Nanjing 210097, China; 2.School of Vocational Technology, Anhui University of Technology, Anhui Maanshan 243002, China
Keywords:
Ben t function sem -i Ben t function m ult-i output Bent function mu lt-i output sem -i Bent function W alsh spec trum
PACS:
TN918
DOI:
-
Abstract:
The concept of sem -i bent func tions is gene ra lized. M eanw hile, the concept o fm ult-i outpu t sem -i ben t functions is introduced. Based on the new concept, a me thod of construct ing mu lt-i output Bent functions is presented. In them ethod, am ult-i outpu t Bent function is constructed by concatenating two mu lt-i output sem -i B ent func tions. Compared w ith the ex isting m ethods, our new ly proposed me thod has a simp le structure and is conven ient to use. W ith this new m ethod, m ult-i output Bent functionsw ith arb itrary even var iables can be constructed. M o reover, am ethod o f constructing mu lt-i output sem -i Ben t functions is proposed. B es ides, app lica tions in the construction o f m ult-i ou tput Bent functions, mu lt-i output sem -i Ben t functions can also be applied in m ult-i output feedforward netwo rks.

References:

[ 1] Ro thaus O S. On bent functions[ J]. J o f Com binato rial Theory ( Series A), 1976, 20: 300 -305.
[ 2] O lsen J, Scho ltz R, W elch L. Bent function sequences [ J]. IEEE T ransactions on Informa tion Theory, 1982, 28 ( 6) : 858- 864.
[ 3] Kum ar P. Bounds on the linear span of bent sequences [ J]. IEEE T ransactions on Informa tion Theory, 1983, 29 ( 6) : 854 -862.
[ 4 ] Adam s C, T avares S. G enerating and coun ting binary bent sequences [ J] . IEEE Transac tions on Inform ation Theory, 1990, 36( 5): 1170 -1173.
[ 5] 郭宝安, 蔡长年. 一类即非Bent基又非线性基的二元 Bent序列的产生与计数[ J]. 科学通报, 1991, 36( 2): 810- 811.
[ 6] 欧洁, 罗铸楷. 关于Ben t函数的一些研究[ J]. 湘潭大学自然科学学报, 1999, 21( 1) : 7- 11.
[ 7] 冯登国. 频谱理论及其在密码学中的应用[M ]. 北京: 科学出版社, 2000165-100.
[ 8] Ka isa Nybe rg. Perfect non linear S-boxed[ A ]. Advances in crypto logy Eurocrypt. 91 [ C ]. Ber lin: Springer Ver lag, 19921 378- 383.
[ 9] 张文英, 滕吉红, 李世取. 布尔函数的谱分解式及其在多维Bent函数构造中的应用[ A ]. 张焕国. 第三届中国信息和通信安全学术会议论文集CCICS[ C] . 北京: 科学出版社, 20031290 -296.
[ 10] Ka isa Nyberg. New B entM app ing s Su itab le fo r Fast Implem entation[ A ]. Fast So ftw are Encryption[ C] . Berlin: Springer-Verlag, 1994. 179 -184.
[ 11] 张文英, 李世取. 2 维2 次Bent函数的性质及构造 [ J]. 曲阜师范大学学报( 自然科学版), 2003, 29 ( 3): 22- 24.
[ 12] 张文英, 李世取, 傅培利. 具有最高代数次数的2n 元 n 维B ent函数的构造[ J]. 应用数学, 2004, 17 ( 3): 444- 449.
[ 13] 胡磊, 裴定一, 冯登国. 一类Bent函数的构造[ J] . 中国科学院研究生院学报, 2002, 19( 2): 103 -106.
[ 14] 杨义先, 胡正名. 抗熵漏前馈网络的研究[ J]. 电子与信息学报, 1991, 13( 6): 232- 241.
[ 15] 胡一平, 冯登国. 多输出前馈函数的一种相关分析方法[ J]. 电子与信息学报, 1998, 20( 6): 787- 793.

Memo

Memo:
-
Last Update: 2013-04-29