|Table of Contents|

Block-Iterative Algorithm with Row Projection for Consistent Linear System(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2006年01期
Page:
47-51
Research Field:
Publishing date:

Info

Title:
Block-Iterative Algorithm with Row Projection for Consistent Linear System
Author(s):
ZHANG Yan~
1,2),YANG Yang~1,LU Weidong~1
Keywords:
b lock- itera tive a lgor ithm w ith row pro jec tion column partition stra tegy the rem otest block
PACS:
O241.6
DOI:
-
Abstract:
In th is paperw e d iscuss a b lock- itera tive algorithm w ith row projection for solv ing large consistent linear system. Th is a lgor ithm is based on theKaczm arz a lgor ithm. The key idea is tha t the coe ffic ient m atr ixA is firstly d-i v ided into b locks, then the current iterativ e po int is pro jec ted onto the remo test b lo ck measured by the distance between the ite rative po int and the b lo ck, and the pro jec tion is taken as the nex t iterative po int. Num er ica l simu la tions show that block- iterative a lgo rithm w ith row pro jection is very effic ient fo r so lv ing il-l conditioned problem s. Com pared w ith the c lassical C imm ino a lgo rithm, a lgo rithm acce le rates the converg ence greatly. In addition w e present a new co-l um n partition strategy, based on the estim ate o f co lumn-dependence o f each block, to d iv ide the coeffic ientm atrixA.

References:

[ 1] SCOLNIK H, ECHEBEST N, GUARDARUCC IM T, et a.l A class o f optim ized row projection m e thods for so lv ing large nonsymme tr ic linear sy stem s[ J]. Appl Num erM a th , 2002, 41( 4): 499-513.
[ 2] CIMM INO G. Ca lco lo approssim ato pe r le so luzion i de i sistem i di equazion i linea ri[ J]. R icerca Sc i II, 1938, 9: 326-333.
[ 3] LIU CHANGWEN. An acce le ration schem e for row pro jection m ethods[ J] . Jour Comp ApplM ath, 1995, 57: 363-391.
[ 4] AHARONI R, CENSOR Y. B lo ck- iterative pro jection m ethods fo r paralle l com puta tion of so lutions to convex feasib ility problem s[ J]. Linear A lgebra App,l 1989, 120: 165-175.
[ 5] GUB IN L G, POLYAK B T, RA IK E V. The m ethod o f pro jections for finding the common point o f conv ex se ts[ J]. USSR Com putM a th Phy s, 1967, 7: 1-24.
[ 6] FLETCHER R. Practica lM ethods o fOptim ization[M ] . 2nd ed. New Yo rk: W iley, 1987: 199-202.
[ 7] GOLUB G H, VAN LOAN C F. M atr ix Com putations [M ] . 3rd ed. Ba ltimo re: Johns H opkins University Press, 1996: 223-606.

Memo

Memo:
-
Last Update: 2013-04-29