|Table of Contents|

Study on Fast Numerical Method for Electromagnetic Finite Element Analysis(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2006年04期
Page:
1-4
Research Field:
Publishing date:

Info

Title:
Study on Fast Numerical Method for Electromagnetic Finite Element Analysis
Author(s):
ZHAO Yang ~1UDPA Lalita~2UDPA Satish~2
1.School of Electrical and Automation Engineering,Nanjing Normal University,Nanjing 210042,China;2.Department of Electrical and Computer Engineering,Michigan State University,East Lansing 48824,USA
Keywords:
electrom agne tic fie ld finite e lem en tm ethod num erical technique
PACS:
TM15
DOI:
-
Abstract:
F inite e lem en tm ethod ( FEM ) is pow erfu l fo r nume rical ana lysis and has been w ide ly and successfu lly used in num er ica l electrom agne tic ana lysis. On the o ther hand, the so lve r deve lopm ent, wh ich is also very important in so lv ing large-sca le FEM equations, still seem s not as w ell-researched as that of mode l deve lopm ent. In th is pape r, an num er ica l techn ique o f target-reg ion loca ting ( TRL) is presented and app lied in finite elem entm ethod for 3D e lec- trom agne ticm odeling. The pr inciple o f new so lver and its availability for non-linear use a re demonstra ted, show ing that it can be eas ily used w ith e fficiency. A lso the imp lem enta tion in FEM based on m agnetic vecto r po tential is intro- duced. F ina lly a num er ica l examp les o f 3D m agnetostaticm ode ling is g iven w ith the com parison o f computer resource used be tw een new so lver and comm ercia l softw are, seeing that a huge com puter resource can be saved by emp loy ing new so lver. Besides tha t, th ism e thod can also be extended to othe r quasi-static applications

References:

[ 1] UDPA S. EM m ethods for ev alua tion o f prosthe tic hea rt valves[ J]. J o f App Phys, 2002, 10( 91): 7 769-7 773.
[ 2] COMSOL AB Inc. FEMLABR: User’s Gu ide[ Z]. COMSOL AB Inc, 2004.
[ 3] IRONS BM. A fron tal so lu tion prog ram for finite e lem en t ana lys is[ J]. Int J of Num er ica lM e thod Eng, 1970( 2): 5-32.
[ 4] YOU Q. Application o f substructurem ethod fo r larg em atrix [ J]. IEEE T rans onM ag, 1988, 1( 24): 326-329.
[ 5] A IHAMADIM A. Coupled vec to r-scalar potentia l me thod fo r 3D m agnetostatic fie ld compu tation using hexahedra l fin ite ele- m ent[ J] . IEEE T rans onMAG, 1996, 5( 32): 4 347-4 349.
[ 6] MAGELE C H, STOGNER H, PRE IS K. C om par ison of diffe rent fin ite e lem ent fo rmu la tions for 3D m agnetostatic prob lem s [ J] . IEEE T rans onMAG, 1988, 1( 24): 31-37.

Memo

Memo:
-
Last Update: 2013-04-29