[ 1] LeeW, S tolfo S J. Datam in ing fram ework for bu ilding intrusion detection m ode ls[ C] / /Proceed ings of the 1999 IEEE Symposium on Secu rity and Pr ivacy. Oakland: IEEE, 1999: 120-132.
[ 2] La zarev icA, Erto z L, Kum arV, e t a.l A comparative study o f anom aly detection schem es in ne tw ork intrusion detection[ C ] / /Proceedings o f the 3nd SIAM Interna tiona l Conference on DataM in ing. San Franc isco, CA: SIAM, 2003: 1-12.
[ 3] Po rtnoy L, Esk in E, Sto lfo S J. In trusion detection w ith unlabe led data us ing c luste ring [ C ] / /Proceed ings of the ACM CSS W o rkshop on DataM in ing Applied to Secur ity. Philadelphia, PA: ACM, 2001: 5-8.
[ 4] The th ird internationa l know ledge discovery and data m ining too ls competition da taset KDDCup- 99[ DB /OL]. [ 1999- 10-28] . http: / /kdd. ics. uc.i edu /da tabases /kddcup99 /kddcup99. htm ,l 1999.
[ 5] Jiaw eiH, Kam be rM. DataM in ing: Concepts and Techn iques[M ]. San Franc isco: M org an Kau fm ann, 2000: 232-233.
[ 6] Esk in E, Arno ld A, Pre rauM, e t a.l A g eom etr ic fram ew ork for unsuperv ised anom aly detec tion: De tecting intrusions in unlabeled data[ C] / /Proceedings o f the DataM ining for Security App lications. Boston: K luw erA cadem ic Press, 2002: 381-390.
[ 7] M odha D S, Spang lerW S. Fea ture we ighting in k-m eans cluster ing [ J]. M achine Learning, 2003, 52( 3): 217-237.
[ 8] W ilson D R, M artinzez T R. Im proved hete rogeneous d istance functions[ J] . Journal ofA rtific ied Inte lligence Research, 1997,6( 1): 1-34.
[ 9] Zhou ZH, Yu Y. Ensem bling loca l learners through mu ltim oda l perturbation[ J]. IEEE T rans System s, M an and Cybernetics B, 2005, 35( 4): 725-735.