|Table of Contents|

Chaotic Particle Swarm Optimization With Adaptive Inertia Weight(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2012年01期
Page:
64-69
Research Field:
Publishing date:

Info

Title:
Chaotic Particle Swarm Optimization With Adaptive Inertia Weight
Author(s):
Xu Yujie1Qiu Lei2Liu Qing1
1.School of Computer Science and Technology,Nanjing Normal University,Nanjing 210046,China
Keywords:
PSO algorithmspremature convergencechaos populationadaptive inertia weight
PACS:
TP18
DOI:
-
Abstract:
To overcome the problem of premature convergence and local optimal in conventional particle swarm optimization ( PSO) ,a new adaptive inertia weight chaos particle swarm optimization ( ACPSO) is presented. The algorithm generates initial population with segmented logistic map,and varies inertia weight dynamically based on the evolutionary state of the population. After the detailed illustrations of how to generate initial population and how to adjust the inertia weight,this paper tests some classical functions with some improved PSO algorithms and ACPSO algorithm. Compared with other algorithms,the ACPSO algorithm not only has a great advantage of convergence property,but also avoids the premature convergence problem effectively,and at the same,it shows the feasibility and validity of the ACPSO algorithm.

References:

[1] Kennedy J,Eberhart R. Particle swarm optimization[C]/ / Proc nternational Conference on Neural Networks. Australia: Perth,1995: 1 942-1 948.
[2]Eberhart R C,Kennedy J. A new optimizer using particle swarm theory[C]/ / Proc 6th Int. Symp. Micro Machine and Human Science. Japan: Nagoya, 1995: 39-43.
[3]Liang J J,Qin A K,Suganthan P N,et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE Trans on Evolutionary Computation,2006,10( 3) : 281-295.
[4]Park J B,Jeong Y W,Lee W N. An improved particle swarm optimization for economic dispatch problems with non-smooth cost functions[C]/ / Power Engineering Society General Meeting. Montreal: 2006: 1-7.
[5]You Zhiyu,Chen Weirong,He Guojun,et al. Adaptive weight particle swarm optimization algorithms with constriction factor [C]/ / International Conference of Information Science and Management Engineering. China: Xi’an,2010: 245-248.
[6]Fan S K,Liang Y C,Zahara E. A genetic algorithm and a particle swarm optimizer hybridized with Nelder-Mead simplex search[J]. Computers and Industrial Engineering,2006, 50( 4) : 401-425.
[7]Wang Xihuai,Li Junjun. Hybrid particle optimization with simulated annealing[C]/ / Proceddings of International Conference of Machine Learning and Cybernetics. China: Shanghai,2004: 2 402-2 405.
[8]He Dakuo,Chang Hongrui,Chang Qing,et al. Particle swarm optimization based on the initial population of clustering [C]/ / International Conference on Natural Computation. China: Yantai,2010: 2 664-2 667.
[9]高鹰,谢胜利. 混沌粒子群算法[J]. 计算机科学,2004,31( 8) : 13-15. Gao Ying,Xie Shengli. Chaos particle swarm optimization [J]. Computer Science,2004,31( 8) : 13-15. ( in Chinese)
[10]Wang H,Wu Z J,Wang J,et al. A new population initialization method based on space transformation search[C]/ / Fifth International Conference on Natural Computation,China: Tianjin,2009: 332-336.
[11]Wang W,Peng L. Chaos particle swarm optimization combined with isolation niche[J]. Systems Engineering and Electronics, 2008,30( 6) : 1 151-1 154.[12]范九伦,张雪峰. 分段Logistic 混沌映射及其性能分析[J]. 电子学报,2009,37( 4) : 720-725. Fan Jiulun,Zhang Xuefeng. Piecewise logistic chaotic map and its performance analysis[J]. Acta Electronica Sinica,2009, 37( 4) : 720-725. ( in Chinese)
[13]Zhan Z H,Zhang J,Li Y,et al. Adaptive particle swarm optimization[J]. IEEE Transactions on Systems,Man and Cybernetics, 2009,39( 6) : 1 362-1 381.

Memo

Memo:
-
Last Update: 2013-03-11