[1] HU M Q,LIU B. Mining and summarizing customer reviews[C]//Proceedings of KDD,USA,2004:168-177.
[2] WIEBE J,BRUCE R,O’HARA T. Development and use of a gold standard dataset for subjectivity classifications[C]//Proceedings of ACL,USA,1999:246-253.
[3] DAVE K,LAWRENCE S,PENNOCK D. Mining the peanut gallery:opinion extraction and semantic classification of product reviews[C]//Proceedings of WWW,Hungary,2003:519-528.
[4] TURNEY P. Thumps up or thumbs down?semantic orientation applied to unsupervised classification of reviews[C]//Proceedings of ACL,USA,2002:417-424.
[5] YU H,HATZIVASSILOGLOU V. Towards answering opinion questions:separating facts from opinions and identifying the polarity of opinion sentences[C]//Proceedings of EMNLP,Japan,2003:129-136.
[6] ESULI A,SEBASTIANI F. Determining term subjectivity and term orientation for opinion mining[C]//Proceedings of EACL,Italy,2006:193-200.
[7] PANG B,LEE L,VAITHYANATHAN S. Thumbs up?sentiment classification using machine learning techniques[C]//Proceedings of the EMNLP,USA,2002:79-86.
[8] MEI Q,LING X,WONDRA M,et al. Topic sentiment mixture modeling facets and opinions in weblogs[C]//Proceedings of WWW,Canada,2007:171-180.
[9] LI S,HUANG C,ZHOU G,et al. Employing personal/impersonal views in supervised and semi-supervised sentiment classification[C]//Proceedings of ACL,Sweden,2010:414-423.
[10] LI S,WANG Z,ZHOU G,et al. Semi-supervised learning for imbalanced sentiment classification[C]//Proceedings of IJCAI,Spain,2011:1 826-1 831.
[11] LI S,HUANG L,WANG R,et al. Sentence-level emotion classification with label and context dependence[C]//Proceedings of ACL,China,2015:1 045-1 053.
[12] SOCHER R,PERELYGIN A,WU J,et al. Recursive deep models for semantic compositionality over a sentiment treebank[C]//Proceedings of EMNLP,USA,2013:1 631-1 642.
[13] ZHU T,ZHANG F,LAN M. ECNUCS:A surface information based system description of sentiment analysis in Twitter in the SemEval-2013(Task 2)[C]//Proceedings of SemEval2013,USA,2013:408-413.
[14] TANG D,WEI F,QIN B,et al. Coooolll:a deep learning system for Twitter sentiment classification[C]//Proceedings of SemEval2014,Ireland,2014:208-212.
[15] 易顺明,易昊,周国栋. 基于情感特征向量的Twitter情感分类方法研究[C]//第14届全国计算语言学会议,广州,2015:79.
YI S M,YI H,ZHOU G D. Twitter sentiment classification with sentimental feature vector[C]//Proceedings of CCL2015,Guangzhou,2015:79. (in Chinese)
[16] KALCHBRENNER N,GREFENSTETTE E,BLUNSOM P. A convolutional neural network for modeling sentences[C]//Proceedings of ACL,USA,2014:655-665.
[17] BACCIANELLA S,ESULI A,SEBASTIANI F. SENTIWORDNET 3.0:An enhanced lexical resource for sentiment analysis and opinion mining[C]//Proceedings of LREC,Malta,2010:83-90.
[18] OWOPUTI O,O’CONNOR B,DYER C,et al. Improved part-of-speech tagging for online conversational text with word clusters[C]//Proceedings of NAACL,USA,2013:380-390.
[19] BROWN P,DESOUZA P,MERCER R,et al. Classbased n-gram models of natural language[J]. Computational linguistics,1997,18(4):467-479.
[20] NAKOV P,KOZAREVA Z,RITTER A,et al. SemEval-2013 task 2:sentiment analysis in Twitter[C]//Proceedings of SemEval2013,USA,2013:312-320.
[21] POURSEPANJ H,WEISSBOCK J,INKPEN D. uOttawa:System description for SemEval 2013 task 2 sentiment analysis in Twitter[C]//Proceedings of SemEval2013,USA,2013:380-383.