[1] 方浩文. 量化投资发展趋势及其对中国的启示[J]. 管理现代化,2012(5):3-5.
FANG H W. Development trend of quantitative investment and its implications for China[J]. Modernization of management,2012(5):3-5.(in Chinese)
[2]何清,李宁,罗文娟,等. 大数据下的机器学习算法综述[J]. 模式识别与人工智能,2014,27(4):327-336.
HE Q,LI N,LYO W J,SHIZ Z. A survey of machine learning algorithms for big data[J]. Pattern recognition and artificial intelligence,2014,27(4):327-336.(in Chinese)
[3]叶伟. 我国资本市场程序化交易的风险控制策略[J]. 证券市场导报,2014(8):46-52.
YE W. The programmatic transaction risk control strategy of China’s capital market[J]. Securities market herald,2014(8):46-52.(in Chinese)
[4]MICHAEL M. Global investment environment of the post-quantitative easing world:the‘new-old’and‘new-new’normal[J]. Pacific economic review,2016,21(3):56-78.
[5]VAPNIK V N. The nature of statistical learning theory[M]. New York:Springer-Verlag,1995.
[6]段继康. 多类分类支持向量机在语音识别中的应用研究[D]. 太原:太原理工大学,2010.
DUAN J K. Application of multi-class classification support vector machine in speech recognition[D]. Taiyuan:Taiyuan University of Technology,2010.(in Chinese)
[7]QIU Z X,WU X J,ZHANG W M. An SVM method of Lda and its Kernel algorithm with application to face recognition[J]. Intelligent automation & soft computing,2011,17(7):923-933.
[8]OLIVEIRA P P de M,NITRINI R,BUSATTO G,et al. Use of SVM methods with surface-based cortical and volumetric subcortical measurements to detect Alzheimer’s disease[J]. Journal of alzheimer’s disease,2010,19(4):1 263-1 272.
[9]NELLO C,JOHN S T,LI G Z,et al.支持向量机导论[M]. 李国正,王猛,曾华军,译. 北京:电子工业出版社,2004:53-58.NELLO C,JOHN S T,LI G Z,et al. Introduction to Support Vector Machines[M]. LI G Z,WANG M,ZENG H J,translated. Beijing:Electronic Industry Press,2004:53-58.(in Chinese)
[10]周晓剑,马义中,朱嘉钢,等. 求解非半正定核Huber-支持向量回归机问题的序列最小最优化算法[J]. 控制理论与应用,2010,27(9):1 178-1 184.
ZHOU X J,MA Y Z,ZHU J G,et al. Sequential-minimal-optimization algorithm for solving Huber-support-vector-regression with non-semi-definite kernels[J]. Control theory and applications,2010,27(9):1 178-1 184.(in Chinese)
[11]CAO L J,KEERTHI S S,ONG C J,et al. Parallel sequential minimal optimization for the training of support vector machines[J]. IEEE transactions on neural networks,2006,17(4):1 039-1 049.
[12]MANGASARIAN O L,THOMPSON M E. Chunking for massive nonlinear kernel classification[J]. Optimization methods and software,2008,23(3):568-574.
[13]鞠鲁峰,王群京,李国丽,等. 永磁球形电机的支持向量机模型的参数寻优[J]. 电工技术学报,2014,29(1):85-90.
GUO L F,WANG Q J,LI G L,et al. Parameter optimization for support vector machine model of permanent magnet spherical motors[J]. Transactions of China electrotechnical society,2014,29(1):85-90.(in Chinese)
[14]丁勇,秦晓明,何寒晖. 支持向量机的参数优化及其文本分类中的应用[J]. 计算机仿真,2010,27(11):187-190.
DING Y,QIN X M,HE H H. Parameter optimizing of support vector machine and application in text classification[J]. Computer simulation,2010,27(11):187-190.(in Chinese)
[15]席裕庚,柴天佑,恽为民. 遗传算法综述[J]. 控制理论与应用,1996,13(6):697-708.
XI Y G,CHAI T Y,YUN W M. Survey on genetic algorithm[J]. Control theory and applications,1996,13(6):697-708.(in Chinese)
[16]SHI Y H. Developmental swarm intelligence:developmental learning perspective of swarm intelligence algorithms[J]. International journal of swarm intelligence research(IJSIR),2014,5(1):36-54.
[17]马永杰,云文霞. 遗传算法研究进展[J]. 计算机应用研究,2012,29(4):1 201-1 206.
MA Y J,YOU W X. Research progress of genetic algorithms[J]. Application research of computers,2012,29(4):1 201-1 206.(in Chinese)
[18]王庆石,肖俊喜. 风险调整的投资组合绩效测度指标综合评价[J]. 世界经济,2001(10):63-70.
WANG Q S,XIAO J X. Risk-adjusted portfolio performance measurement indicator comprehensive evaluation[J]. World economy,2001(10):63-70.(in Chinese)