|Table of Contents|

Application of SVM Optimized by Genetic Algorithmin Quantization Timing Selection(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2017年01期
Page:
72-
Research Field:
计算机工程
Publishing date:

Info

Title:
Application of SVM Optimized by Genetic Algorithmin Quantization Timing Selection
Author(s):
Huang Hongyun1Wu Libin2Li Shizheng1
(1.School of Finance,Anhui University of Finance and Economics,Bengbu 233000,China)(2.Institute of Statistics and Applied Mathematics,Anhui University of Finance and Economics,Bengbu 233000,China)
Keywords:
genetic algorithm supportsupport vector machinequantitative investmenttiming selectionLIBSVM Toolbox
PACS:
TP183; F830.91
DOI:
10.3969/j.issn.1672-1292.2017.01.011
Abstract:
For quantitative investment caused by inaccurate trading signal judgment during the process of the timing of difficult problems,the excellent non-linear separable ability is used to support vector machine(SVM)based on historical price quantity information(opening price,closing price,the highest and the lowest price,volume and short long term moving average)model of quantitative timing. In the specific application of strategy model,in order to determine LIBSVM ToolBox in the "c" and "g" parameter,this paper optimize them through the genetic algorithm,then uses MATLAB software to achieve the(Shanghai pudong development bank)for individual stocks from January 4,2012 to 2012 on January 22,the strategy of back,finally the csi 300 index as the benchmark from the annualized yield,sharpe ratio,the angle of information ratio and maximum retracement back to the measurement results are analyzed. It is concluded that the GA-SVM can more accurately judge the conclusion of trading signals.

References:

[1] 方浩文. 量化投资发展趋势及其对中国的启示[J]. 管理现代化,2012(5):3-5.
FANG H W. Development trend of quantitative investment and its implications for China[J]. Modernization of management,2012(5):3-5.(in Chinese)
[2]何清,李宁,罗文娟,等. 大数据下的机器学习算法综述[J]. 模式识别与人工智能,2014,27(4):327-336.
HE Q,LI N,LYO W J,SHIZ Z. A survey of machine learning algorithms for big data[J]. Pattern recognition and artificial intelligence,2014,27(4):327-336.(in Chinese)
[3]叶伟. 我国资本市场程序化交易的风险控制策略[J]. 证券市场导报,2014(8):46-52.
YE W. The programmatic transaction risk control strategy of China’s capital market[J]. Securities market herald,2014(8):46-52.(in Chinese)
[4]MICHAEL M. Global investment environment of the post-quantitative easing world:the‘new-old’and‘new-new’normal[J]. Pacific economic review,2016,21(3):56-78.
[5]VAPNIK V N. The nature of statistical learning theory[M]. New York:Springer-Verlag,1995.
[6]段继康. 多类分类支持向量机在语音识别中的应用研究[D]. 太原:太原理工大学,2010.
DUAN J K. Application of multi-class classification support vector machine in speech recognition[D]. Taiyuan:Taiyuan University of Technology,2010.(in Chinese)
[7]QIU Z X,WU X J,ZHANG W M. An SVM method of Lda and its Kernel algorithm with application to face recognition[J]. Intelligent automation & soft computing,2011,17(7):923-933.
[8]OLIVEIRA P P de M,NITRINI R,BUSATTO G,et al. Use of SVM methods with surface-based cortical and volumetric subcortical measurements to detect Alzheimer’s disease[J]. Journal of alzheimer’s disease,2010,19(4):1 263-1 272.
[9]NELLO C,JOHN S T,LI G Z,et al.支持向量机导论[M]. 李国正,王猛,曾华军,译. 北京:电子工业出版社,2004:53-58.NELLO C,JOHN S T,LI G Z,et al. Introduction to Support Vector Machines[M]. LI G Z,WANG M,ZENG H J,translated. Beijing:Electronic Industry Press,2004:53-58.(in Chinese)
[10]周晓剑,马义中,朱嘉钢,等. 求解非半正定核Huber-支持向量回归机问题的序列最小最优化算法[J]. 控制理论与应用,2010,27(9):1 178-1 184.
ZHOU X J,MA Y Z,ZHU J G,et al. Sequential-minimal-optimization algorithm for solving Huber-support-vector-regression with non-semi-definite kernels[J]. Control theory and applications,2010,27(9):1 178-1 184.(in Chinese)
[11]CAO L J,KEERTHI S S,ONG C J,et al. Parallel sequential minimal optimization for the training of support vector machines[J]. IEEE transactions on neural networks,2006,17(4):1 039-1 049.
[12]MANGASARIAN O L,THOMPSON M E. Chunking for massive nonlinear kernel classification[J]. Optimization methods and software,2008,23(3):568-574.
[13]鞠鲁峰,王群京,李国丽,等. 永磁球形电机的支持向量机模型的参数寻优[J]. 电工技术学报,2014,29(1):85-90.
GUO L F,WANG Q J,LI G L,et al. Parameter optimization for support vector machine model of permanent magnet spherical motors[J]. Transactions of China electrotechnical society,2014,29(1):85-90.(in Chinese)
[14]丁勇,秦晓明,何寒晖. 支持向量机的参数优化及其文本分类中的应用[J]. 计算机仿真,2010,27(11):187-190.
DING Y,QIN X M,HE H H. Parameter optimizing of support vector machine and application in text classification[J]. Computer simulation,2010,27(11):187-190.(in Chinese)
[15]席裕庚,柴天佑,恽为民. 遗传算法综述[J]. 控制理论与应用,1996,13(6):697-708.
XI Y G,CHAI T Y,YUN W M. Survey on genetic algorithm[J]. Control theory and applications,1996,13(6):697-708.(in Chinese)
[16]SHI Y H. Developmental swarm intelligence:developmental learning perspective of swarm intelligence algorithms[J]. International journal of swarm intelligence research(IJSIR),2014,5(1):36-54.
[17]马永杰,云文霞. 遗传算法研究进展[J]. 计算机应用研究,2012,29(4):1 201-1 206.
MA Y J,YOU W X. Research progress of genetic algorithms[J]. Application research of computers,2012,29(4):1 201-1 206.(in Chinese)
[18]王庆石,肖俊喜. 风险调整的投资组合绩效测度指标综合评价[J]. 世界经济,2001(10):63-70.
WANG Q S,XIAO J X. Risk-adjusted portfolio performance measurement indicator comprehensive evaluation[J]. World economy,2001(10):63-70.(in Chinese)

Memo

Memo:
-
Last Update: 1900-01-01