[1] AL-SHAMRI M Y H. Power coefficient as a similarity measure for memory-based collaborative recommender systems[J]. Expert systems with applications,2014,41(13):5 680-5 688.
[2]CHOI K,SUH Y. A new similarity function for selecting neighbors for each target item in collaborative filtering[J]. Knowledge-based systems,2013,37(1):146-153.
[3]邓爱林,朱扬勇,施伯乐. 基于项目评分预测的协同过滤推荐算法[J]. 软件学报,2003,14(9):1 621-1 628.
DENG A L,ZHU Y Y,SHI B L. A collaborative filtering recommendation algorithm based on item rating prediction[J]. Journal of software,2003,14(9):1 621-1 628.(in Chinese)
[4]罗奇,余英,赵呈领,等. 自适应推荐算法在电子超市个性化服务系统中的应用研究[J]. 通信学报,2006,27(11):183-186,192.
LUO Q,YU Y,ZHAO C L,et al. Research on personalized service system in E-supermarket by using adaptive recommendation algorithm[J]. Journal on communications,2006,27(11):183-186,192.(in Chinese)
[5]SUGANESHWARI G,IBRAHIM S P S. A survey on collaborative filtering based recommendation system[C]//Proceedings of the 3rd International Symposium on Big Data and Cloud Computing Challenges(ISBCC-16’). Springer International Publishing,2016.
[6]NAGARAJU S,KASHYAP M,BHATTACHRAYA M. An effective density based approach to detect complex data clusters using notion of neighborhood difference[J]. International journal of automation and computing,2017,14(1):1-11.
[7]OMAR R,HIROTAKA O,SHIGEMI K. The robustest clusters in the input-output networks:global(\hbox{CO}_2\)emission clusters[J]. Journal of economic structures,2017,6(1):3.
[8]黄典. 基于项目的协同过滤推荐算法的改进[J]. 中国科技信息,2016(1):64-66.
HUANG D. Improvement of item-based collaborative filtering recommendation algorithm[J]. China science and technology information,2016(1):64-66.(in Chinese)
[9]ZHANG Y,LIU Y. A collaborative filtering algorithm based on time period partition[C]//Third International Symposium on Intelligent Information Technology and Security Informatics. New York:IEEE Computer Society,2010:777-780.
[10]田伟,彭玉青. 基于电子商务应用的协同过滤技术改进综述[J]. 计算机工程与科学,2008,30(10):61-63,66.
TIAN W,PENG Y Q. Improvement research of the CF algorithm for E-commerce[J]. Computer engineering and science,2008,30(10):61-63,66.(in Chinese)
[11]陆诗琴. 个性化推荐技术中的互信息相似度应用研究[D]. 桂林:桂林理工大学,2015.
LU S Q. Research on the application of mutual information similarity in personalized recommendation technology[D]. Guilin:Guilin University of Technology,2015.(in Chinese)
[12]RESNICK P,IACOVOU N,SUCHAK M,et al. Group Lens:an open architecture for collaborative filtering of net news[C]//ACM Conference on Computer Supported Cooperative Work. ACM,1994:175-186.
[13]朱文奇. 推荐系统用户相似度计算方法研究[D]. 重庆:重庆大学,2014.
ZHU W Q. Research on user’s similarity calculation method[D]. Chongqing:Chongqing University,2014.(in Chinese)
[14]KIM B M,LI Q,CHANG S P. A new approach for combining content-based and collaborative filters[J]. Journal of intelligent information system,2006,27(1):79-91.
[15]YANG X,GUO Y,LIU Y. A survey of collaborative filtering based social recommender systems[J]. Computer communications,2014,41(5):1-10.
[16]梁昌勇,冷亚军,王勇胜,等. 电子商务推荐系统中群体用户推荐问题研究[J]. 中国管理科学,2013,21(3):153-158.
LIANG C Y,LENG Y J,WANG Y S,et al. Research on group recommendation in e-commerce recommender systems[J]. Chinese journal of management science,2013,21(3):153-158.(in chinese)
[17]魏强,金芝,许焱. 基于概率主题模型的物联网服务发现[J]. 软件学报,2014(8):1 640-1 658.
WEI Q,JIN Z,XU Y. Service discovery for internet of things based on probabilistic topic model[J]. Journal of software,2014(8):1 640-1 658.(in Chinese)
[18]ZHAO Z D,SHANG M S. User-based collaborative-filtering recommendation algorithms on Hadoop[C]//Third international conference on knowledge discovery and data mining. New York:IEEE Computer Society,2010:478-481.