|Table of Contents|

A Control Method of Demand Response Based on Frequency Variation Rate(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2018年03期
Page:
63-
Research Field:
电气与电子工程
Publishing date:

Info

Title:
A Control Method of Demand Response Based on Frequency Variation Rate
Author(s):
Ye ZijianBao YuqingLiu QiliangLi XiaoyanZhang HuilinZhou Jin
School of NARI Electrical and Automation,Nanjing Normal University,Nanjing 210042,China
Keywords:
load frequency controldemand responsegrid-friendly device
PACS:
TM73
DOI:
10.3969/j.issn.1672-1292.2018.03.009
Abstract:
Focusing more on the theoretical calculation,this paper proposes a method to realize demand response in primary frequency control. In this method,the frequency and the frequency variation rate are used to calculate the disturbance’s amplitude and critical value,by which the load of required demand response can be obtained. This part of load is then temporarily closed to assist power system frequency regulation. Simulation experiments verify that the proposed method can accurately calculate the demand response load,which is more conducive to the stability of system frequency.

References:

[1] 商国才. 电力系统自动化[M]. 天津:天津大学出版社,1996.
SHANG G C. Power system automation[M]. Tianjin:Tianjin University Press,1996.(in Chinese)
[2]GALUS M D,KOCH S,ANDERSSON G. Provision of load frequency control by PHEVs,controllable loads,and a cogeneration unit[J]. IEEE transactions on industrial electronics,2011,58(10):4568-4582.
[3]TAN W. Load frequency control:problems and solutions[C]//Proceedings of the 30th Chinese Control Conference. Yantai,China,2011:6281-6286.
[4]HAMMERSTROM D,BROUS J,CARLON T A,et al. Pacific northwest gridwise testbed demonstration projects,part II:grid friendly appliance project[M]. Washington:Clothes Dryers,2007.
[5]HAMMERSTROM D. Final letter report:grid-responsive demand-side control using grid friendlyTM appliance technologies[R]. Richland:Pacific Northwest National Laboratory,2009.
[6]LU N,HAMMERSTROM D J,PATRICK S. PNNL-18998 grid friendlyTM device model development and simulation[R]. Richland:Pacific Northwest National Laboratory,2009.
[7]WHITEN B,FULFORD G,HICKSON R,et al. The response of power systems to autonomous“grid friendly”devices[R]. New Zealand:Study Group Report of Transpower NZ,2008.
[8]叶子健,陈培培,包宇庆. 需求响应参与电力系统调频的延时建模与控制[J]. 电力工程技术,2018,37(2):8-12.
YE Z J,CHEN P P,BAO Y Q. Modeling and control strategy for the delay of demand response in the frequency control of the power system[J]. Electric power engineering technology,2018,37(2):8-12.(in Chinese)
[9]BAO Y Q,LI Y. FPGA-based design of grid friendly appliance controller[J]. IEEE transactions on smart grid,2014,5(2):924-931.
[10]MOLINA G A,BOUFFARD F,KIRSCHEN D S. Decentralized demand-side contribution to primary frequency control[J]. IEEE transactions on power systems,2011,26(1):411-419.
[11]SHORT J A,INFIELD D G,FRERIS L L. Stabilization of grid frequency through dynamic demand control[J]. IEEE transactions on power systems,2007,22(3):1284-1293.
[12]KUNDUR P. Power system stability and control[M]. New York:McGraw-Hill,1994.
[13]ANDERSON P M,MIRHEYDAR M. A low-order system frequency response model[J]. IEEE transactions on power systems,1990,5(3):720-729.
[14]JIA R,NEHRIR M H,PIERRE D A. Voltage control of aggregate electric water heater load for distribution system peak load shaving using field data[C]//Proceedings of 39th North American Power Symposium(NAPS)Margantown. USA,2007:492-497.

Memo

Memo:
-
Last Update: 2018-09-30