|Table of Contents|

Multi-Stability Analysis of an Active Charge-ControlledMemristive System and Circuit Implementation(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2019年01期
Page:
19-
Research Field:
电气与自动化工程
Publishing date:

Info

Title:
Multi-Stability Analysis of an Active Charge-ControlledMemristive System and Circuit Implementation
Author(s):
Li ChuangMin FuhongLü Yanmin
School of NARI Electrical and Automation,Nanjing Normal University,Nanjing 210023,China
Keywords:
active charge-controlled memristorChua’s circuitmemristive chaotic systemmulti-stable coexistence
PACS:
TP271
DOI:
10.3969/j.issn.1672-1292.2019.01.003
Abstract:
In the paper,a new type of five-dimensional memristive chaotic system is easily implemented by replacing a nonlinear resistance in the Chua’s circuit with an active charge-controlled memristor. Firstly,the stable equilibrium and unstable equilibrium point sets of the system are analyzed theoretically by establishing the dimensionless equation. Next,through Lyapunov index spectrum,bifurcation diagram and phase track diagram,the coexistence phenomena of the system with respect to the changes and initial condition is studied. When different initial conditions are used,the system displays the coexistent phenomenon of chaotic attractors with different topological structures or several limit cycles with different attraction domains,as well as the phenomenon of multiple attractors of several periodic limit cycle and chaotic attractors with multiple topological structures. Finally,based on multisim circuit simulation model,the simulation results are consistent with the numerical simulations and relevant theoretical analysis. These show the correctness of dynamic analysis and the physical realizability of the system,and lay a foundation for expanding the application in encryption.

References:

[1] CHUA L O. Memristor—the missing circuit element[J]. IEEE transactions on circuit theory,1971,18(5):507-519.
[2]STRUKOV D B,SNIDER G S,STEWART D R,et al. The missing memristor found[J]. Nature,2008,453(7191):80-83.
[3]武花干,包伯成,徐权. 基于二极管桥与串联RL滤波器的一阶广义忆阻器[J]. 电子学报,2015,43(10):2192-2132.
WU H G,BAO B C,XU Q. First order generalized memristor emulator based on diode bridge and series RL filter[J]. Acta electronica sinica,2015,43(10):2129-2132.(in Chinese)
[4]闵富红,王珠林,王恩荣,等. 新型忆阻器混沌电路及其在图像加密中的应用[J]. 电子与信息学报,2016,38(10):2681-2688.
MIN F H,WANG Z L,WANG E R,et al. New memristor chaotic and its application to encryption[J]. Journal of electronics & information technology,2016,38(10):2681-2688.(in Chinese)
[5]刘东青,程海峰,朱玄,等. 忆阻器及其阻变机理研究进展[J]. 物理学报,2014,63(18):187301.
LIU D Q,CHENG H F,ZHU X,et al. Research progress of memristors and memristive mechanism[J]. Acta physica sinica,2014,63(18):187301.(in Chinese)
[6]洪庆辉,曾以成,李志军. 含磁控和荷控两种忆阻器的混沌电路设计与仿真[J]. 物理学报,2013,62(23):230502.
HONG Q H,ZENG Y C,LI Z J. Design and simulation of chaotic circuit for flux-controlled memristor and charge-controlled memristor[J]. Acta physica sinica,2013,62(23):230502.(in Chinese)
[7]吴洁宁,王丽丹,段书凯. 基于忆阻器的时滞混沌系统及伪随机序列发生器[J]. 物理学报,2017,66(3):030502.
WU J N,WANG L D,DUAN S K. A memristor-based time-delay chaotic systems and paeudo-random sequence generater[J]. Acta physica sinica,2017,66(3):030502.(in Chinese)
[8]YUAN F,WANG G Y,WANG X W. Extreme multistability in a memristor-based multi-scroll hyper-chaotic system[J]. Chaos,2016,26(7):073107.
[9]PENG G Y,MIN F H. Multistability analysis,circuit implementations and application in image encryption of a novel memristive chaotic circuit[J]. Nonlinear dynamics,2017,90(3):1607-1625.
[10]PATEL M S,PATEL U,SEN A,et al. Experimental observation of extreme multistability in an electronic system of two coupled R?ssler oscillators[J]. Physical reviewe E,2014,89(2):022918.
[11]俞清,包伯成,胡丰伟,等. 基于一阶广义忆阻器的文氏桥混沌振荡器研究[J]. 物理学报,2014,63(24):240505.
YU Q,BAO B C,HU F W,et al. Wien-bridge chaotic oscillator based on first-order generalized memristor[J]. Acta physica sinica,2014,63(24):240505.(in Chinese)
[12]包涵,包伯成,林毅,等. 忆阻自激振荡系统的隐藏吸引子及其动力学特性[J]. 物理学报,2016,65(18):180501.
BAO H,BAO B C,LIN Y,et al. Hidden attrctor and its dynamical characteristic in memristive self-oscillating system[J]. Acta physica sinica,2016,65(18):180501.(in Chinese)
[13]SPROTT J C,LI C B. Comment on“How to obtain extreme multistability in coupled dynamical systems”[J]. Physical reviewe E,2014,89(6):066901.
[14]阮静雅,孙克辉,牟俊. 基于忆阻器反馈的Lorenz超混沌系统及其电路实现[J]. 物理学报,2016,65(19),190502.
RUAN J Y,SUN K H,MOU J. Memristor-based Lorenz hyper-chaotic system and its circuit implementation[J]. Acta physica sinica,2016,65(19):190502.(in Chinese)
[15]XU Q,LIN Y,BAO B C,et al. Multiple attractors in a non-ideal active voltage-controlled memristor based Chua’s circuit[J]. Chaos solitons and fractals,2016,83:186-200.
[16]KENGNE J,TABEKOUENG Z N,TAMBA V K,et al. Periodicity,chaos,and multiple attractors in a memristor-based Shinriki’s circuit[J]. Chaos,2015,25(10):103126.
[17]LI Q D,ZENG H Z,LI J. Hyperchaos in a 4D memristive circuit with infinitely many stable equilibria[J]. Nonlinear dynamics,2015,79(4):2295-2308.
[18]DANG X Y,LI C B,BAO B C et al. Complex transient dynamics of hidden attractors in simple 4D system[J]. Chinese physics B,2015,24(5):050503.

Memo

Memo:
-
Last Update: 2019-03-30