|Table of Contents|

Processing and Recognition Technology Based on Fisheye Lens Image in Real-Time Positioning of Rotary Library Files(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2019年02期
Page:
75-
Research Field:
计算机与信息工程
Publishing date:

Info

Title:
Processing and Recognition Technology Based on Fisheye Lens Image in Real-Time Positioning of Rotary Library Files
Author(s):
Cheng JieYe WenwuXu Yinlin
School of Physics and Technology,Nanjing Normal University,Nanjing 210023,China
Keywords:
fisheye lensimage identificationconvolutional neural networkfile identification
PACS:
TH711
DOI:
10.3969/j.issn.1672-1292.2019.02.010
Abstract:
This paper introduces a rotary library file inventory technology based on fisheye lens image processing and recognition. A wide angle of view of the fisheye lens is used to capture multiple files with digital labels arranged in rows. Image correction and segmentation technology are used to process each label. Image content is recognized by constructed Convolutional Neural Network. The file position is realized by the bit sequence of the label number listed in the lens. The technology has good real-time performance,accurate identification and low cost.

References:

[1] 王璐瑶. 基于RFID技术的实体档案管理研究[J]. 机电兵船档案,2018(2):39-41.
WANG L Y. Research on entity archive management based on RFID technology[J]. Electromechanical ship file,2018(2):39-41.(in Chinese)
[2]秦荪榛. 基于物联网技术的档案馆实时自动盘库控制系统[D]. 南京:南京师范大学,2014.
QIN S Z. Archives real-time automatic library control system based on internet of things technology[D]. Nanjing:Nanjing Normal University,2014.(in Chinese)
[3]郭盛威. 鱼眼图像视频校正方法研究[D]. 武汉:武汉工程大学,2017.
GUO S W. Fisheye image video correction method research[D]. Wuhan:Wuhan Institute of Technology,2017.(in Chinese)
[4]冯为嘉,张宝峰,曹作良. 基于鱼眼镜头的全方位视觉参数标定与畸变矫正[J]. 天津大学学报,2011,44(5):417-424.
FENG W J,ZHANG B F,CAO Z L. Omni-directional vision parameter calibration and rectification based on fisheye lens[J]. Journal of Tianjin university,2011,44(5):417-424.(in Chinese)
[5]朱安娜. 基于卷积神经网络的场景文本定位及多方向字符识别研究[D]. 武汉:华中科技大学,2016.
ZHU A N. Research on convolution neural network-based scene text detection and multi-orientational character recognition [D]. Wuhan:Huazhong University of Science and Technology,2016.(in Chinese)
[6]余承波. 基于支持向量机(SVM)的车牌识别[D]. 淮南:安徽理工大学,2018.
YU C B. License plate recognition based on support vector machine(SVM)[D]. Huainan:Anhui University of Science and Technology,2018.(in Chinese)
[7]靳涛,张永爱. TensorFlow平台下基于深度学习的数字识别[J]. 信息技术与网络安全,2018,37(4):74-78.
JIN T,ZHANG Y A. Digital recognition based on deep learning in Tensor Flow platform[J]. Information technology and network security,2018,37(4):74-78.(in Chinese)
[8]张立. 基于卷积神经网络的车牌字符识别方法研究[D]. 镇江:江苏大学,2015.
ZHANG L. Research of license plate recognition based on convolutional neural network[D]. Zhenjiang:Jiangsu University,2015.(in Chinese).

Memo

Memo:
-
Last Update: 2019-06-30