|Table of Contents|

Regression Model Research on Posting Quality Evaluationin Online Learning Community(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2020年01期
Page:
33-41
Research Field:
信息与通信工程
Publishing date:

Info

Title:
Regression Model Research on Posting Quality Evaluationin Online Learning Community
Author(s):
Liu JinjingWang Liying
School of Education Science,Nanjing Normal University,Nanjing 210023,China
Keywords:
machine learningtext quality evaluationconceptual relationship diagramonline learning communityopen topic
PACS:
G434
DOI:
10.3969/j.issn.1672-1292.2020.01.006
Abstract:
In the online learning community,postings based on open topics in a variety of teaching contexts enable students to articulate the progress of self-knowledge updat, but with the increasing costs of reading, evaluating and analyzing these posts. To alleviate it,the machine learning theory is applied to construct a regression model for posting quality evaluation. Firstly,the model constructs five dimensions of text quality evaluation and the conceptual relationship diagram on which the calculation depends. Secondly,combined with the expert scoring standard and the scoring result,the model uses multiple fitting regression algorithms to predict and evaluate the text quality. Finally,the algorithm is evaluated by coefficient of determination,cross-validation accuracy and mean square error. This paper takes 575 posts of the“Shu Ke”platform which advocates knowledge construction from“Network Security and Maintenance”course as a dataset. The model can realize the feature extraction and predict the posting quality evaluation by means of conceptual relationship diagram. The experimental results show that the accuracy and stability of the gradient decision boosting tree regression algorithm are better than those of other algorithm models. The regression model can effectively realize the automatic evaluation of text quality based on five characteristic dimensions that are significantly related to text quality:readability,relevance,cohesion,professionalism and exploration,thus reducing the burden on teachers and helping students with self-diagnosis.

References:

[1] 何玲,黎加厚. 促进学生深度学习[J]. 现代教学,2005(5):29-30.
[2]杨宗凯. 数据驱动个性化学习[N]. 中国教育报,2018-11-01(007).
[3]侯明良. MOOC讨论区数据挖掘与应用[D]. 济南:山东大学,2016.
[4]AU C H,LAM K C,FUNG W S,et al. Using animation to develop a MOOC on information security[C]//IEEE International Conference on Industrial Engineering and Engineering Management.
[5]史文祥. 基于DT-BM的学习者主题行为模型研究[D]. 武汉:华中师范大学,2017.
[6]李敏. 虚拟学习社区成员互动的知识建构效果分析[D]. 扬州:扬州大学,2015.
[7]张平霞. 基于文本挖掘的MOOC讨论区学习评价研究[D]. 重庆:重庆师范大学,2018.
[8]VALENTI S,NEFF E,CUCCHIARELLI A. An overview of current research on automated essay grading[J]. Journal of Information Technology Education,2003,2:319-330.
[9]谭冬晨. 主观题评分算法模型研究[D]. 成都:电子科技大学,2011.
[10]王漪. 文本挖掘技术的研究及其在教学平台中的应用[D]. 北京:北京交通大学,2014.
[11]SHEHAB A,ELHOSENY M,HASSANIEN A E. A hybrid scheme for automated essay grading based on LVQ and NLP techniques[C]//2017 13th International Computer Engineering Conference(ICENCO). Cairo:IEEE,2016:65-70.
[12]RAMALINGAM V V,PANDIAN A,CHETRY P,et al. Automated essay grading using machine learning algorithm[C]//2018 10th National Conference on Mathematical Techniques and its Applications(NCMTA). Kattankulathur,2018.
[13]LIU M,WANG Y Q,XU W W,et al. Automated scoring of Chinese engineering students’ english essays[J]. International Journal of Distance Education Technoloies(IJDET),2017,15(1):52-68.
[14]钟将,张淑芳,郭卫丽,等. 主题特征格分析:一种用户生成文本质量评估方法[J]. 电子学报,2018,46(9):2201-2206.
[15]靳健,季平. 用于在线产品评论质量分析的Co-training算法[J]. 上海大学学报(自然科学版),2014,20(3):289-295.
[16]王洪伟,孟园. 在线评论质量有用特征识别:基于GBDT特征贡献度方法[J]. 中文信息学报,2017,31(3):109-117.
[17]聂卉. 基于内容分析的用户评论质量的评价与预测[J]. 图书情报工作,2014,58(13):83-89.
[18]张艳丰,李贺,彭丽徽,等. 基于模糊神经网络的在线评论效用分类过滤模型研究[J]. 情报科学,2017,35(5):94-99,131.
[19]王忠群,皇苏斌,修宇,等. 基于领域专家和商品特征概念树的在线商品评论深刻性度量[J]. 现代图书情报技术,2015(9):17-25.
[20]AIKA Q,KARIM B S S,RAM G R,et al. A concept-level approach to the analysis of online review helpfulness[J]. Computers in Human Behavior,2016,58:75-81.
[21]NIKOLAOS K,ELENA G B,SALVADOR S A. Evaluating content quality and helpfulness of online product reviews:the interplay of review helpfulness vs. review content[J]. Electronic Commerce Research and Applications,2012,11(3):205-217.
[22]黄传河,杜瑞颖,张沪寅,等. 网络安全[M]. 武汉:武汉大学出版社,2004.
[23]龚越,罗小芹,王殿海,等. 基于梯度提升回归树的城市道路行程时间预测[J]. 浙江大学学报(工学版),2018,52(3):453-460.

Memo

Memo:
-
Last Update: 2020-03-15