|Table of Contents|

Effect of CO2 on the Preparation of Carbon Nanotubesby Catalytic Cracking of CH4(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2020年02期
Page:
66-71
Research Field:
化学工程与技术
Publishing date:

Info

Title:
Effect of CO2 on the Preparation of Carbon Nanotubesby Catalytic Cracking of CH4
Author(s):
Liu Yuying12Wang Xiaoqi12Zhai Maojing12Zhu Xiaowei12Yang Anyu12Dong Yi12Cai Bingyu12Piao Guilin12Wang Xinye12
(1.School of Energy and Mechanical Engineering,Nanjing Normal University,Nanjing 210023,China)(2.Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control,Nanjing Normal University,Nanjing 210023,China)
Keywords:
biogasmethanecarbon dioxidecatalytic crackingnickelcarbon nanotube
PACS:
TQ546
DOI:
10.3969/j.issn.1672-1292.2020.02.010
Abstract:
Biogas contains high concentrations of CH4,so it has a potential to produce carbon nanotubes. However,the high concentration of CO2 in it has a potential impact on the preparation. In this paper,we investigate the effect of CO2 on the preparation of carbon nanotubes by catalytic cracking of methane. The carbon nanotube preparation experiments are carried out by using the commercial nickel-based catalyst and the horizontal tube furnace apparatus. The catalysts and carbon nanotubes are characterized by TPR,TPO,SEM,TEM,etc. The highest catalytic cracking efficiency is obtained at 650 ℃ with the maximum mass of carbon products which are 4 times as much as that of the catalyst. The main product is multi-walled carbon nanotubes. CO2 has no effect on the best temperature for catalytic cracking,the highest efficiency of catalytic cracking and the production of multi-wall carbon nanotubes. However,CO2 increases the inner diameter,length and smoothness of the carbon nanotubes,which may be due to the deposited amorphous carbon from CH4 inhibition of catalytic cracking,that hindered the growth of carbon can nanotubes. However,the reaction of CO2 and deposited carbon removes the deposited carbon,resulting in the enhancement of the carbon nanotubes growth. From the perspective of the impact of CO2,it is feasible to prepare carbon nanotubes from biogas.

References:

[1] 张强,黄佳琦,赵梦强,等. 碳纳米管的宏量制备及产业化[J]. 中国科学:化学,2013,43(6):641-666.
[2]ROBERTSON S D. Carbon formation from methane pyrolysis over some transition metal surfaces—I. Nature and properties of the carbons formed[J]. Carbon,1970,8(3):365-374.
[3]胡晓阳. 碳纳米管和石墨烯的制备及应用研究[D]. 郑州:郑州大学,2013.
[4]CALGARO C O,PEREZ-LOPEZ O W. Graphene and carbon nanotubes by CH4 decomposition over Co-Al catalysts[J]. Materials Chemistry Physics,2019,226:6-19.
[5]YOO Y J,BAIK H K. Synthesis of carbon nanotubes by chemical vapor deposition technique[J]. Journal of Vacuum Science & Technology B,2001,19(1):27-31.
[6]BOROWIECKI T,GAC W,DENIS A. Effects of small MoO3 additions on the properties of nickel catalysts for the steam reforming of hydrocarbons:Ⅲ. Reduction of Ni-Mo/Al2O3 catalysts[J]. Applied Catalysis A:General,2004,270(1/2):27-36.
[7]SERRANO-LOTINA A,DAZA L. Highly stable and active catalyst for hydrogen production from biogas[J]. Journal of Power Sources,2013,238:81-86.
[8]AMACZ A. CNT and H2 production during CH4 decomposition over Ni/CeZrO2. I. A mechanistic study[J]. ChemEngineering,2019,3(1):26.
[9]周固民,冯永成,赵社涛,等. 程序升温氧化法测定碳纳米管的纯度[J]. 合成化学,2002,10(6):534-538.
[10]彭峰,王红娟,余皓,等. 用程序升温氧化技术研究碳纳米管氧化动力学[J]. 石油化工,2005,34(11):1064-1067.
[11]孔令涌,罗文耀,欧阳增图,等. 浅析碳纳米管纯度测定方法[J]. 材料导报,2006,20(增刊1):114-116.
[12]周蕾. 多壁碳纳米管的改性及其吸附性能研究[D]. 长沙:中南大学,2013.
[13]赵江. 高质量多壁碳纳米管的制备方法和应用研究[D]. 上海:上海交通大学,2013.
[14]宋晓瑜. 多壁碳纳米管的功能化及应用[D]. 大连:大连理工大学,2013.
[15]TAN P J,GAO Z H,SHEN C F,et al. Ni-Mg-Al solid basic layered double oxide catalysts prepared using surfactant-assisted coprecipitation method for CO2 reforming of CH4[J]. Chinese Journal of Catalysis,2014,35(12):1955-1971.
[16]李琳,张露明,张煜华,等. 镍负载量对Ni/MgO(111)催化甲烷二氧化碳重整反应性能影响[J]. 燃料化学学报,2015,43(3):315-322.
[17]方修忠. 高效抗积碳Ni基甲烷重整制氢催化剂的制备和性能研究[D]. 南昌:南昌大学,2016.

Memo

Memo:
-
Last Update: 2020-05-15