|Table of Contents|

Kernelized Correlation Filter Tracking AlgorithmBased on Adaptive Feature Fusion(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2020年03期
Page:
50-56
Research Field:
计算机科学与技术
Publishing date:

Info

Title:
Kernelized Correlation Filter Tracking AlgorithmBased on Adaptive Feature Fusion
Author(s):
Dong ChunyanLiu HuaiLiang QinjiaLiang Lei
School of Electrical and Automation Engineering,Nanjing Normal University,Nanjing 210023,China
Keywords:
object trackingkernelized correlation filterfeature fusionmodel update
PACS:
TP391
DOI:
10.3969/j.issn.1672-1292.2020.03.009
Abstract:
In the kernelized correlation filter object tracking algorithm,the use of mere histograms of oriented gradients(HOG)feature can easily cause insufficient feature expression. In addition,the linear interpolation model updating strategy used in this algorithm can easily cause model drift. To solve these problems,an improved kernelized correlation filter tracking algorithm based on adaptive feature fusion and model updating is proposed in this paper. Firstly,PCA is applied to reduce the dimension of HOG feature and color name(CN)feature to improve the speed of the algorithm. Secondly,the response maps of the two dimensionality reduction features are calculated independently. After that,the product of the peak value and the average peak-to-correlation energy(APCE)of two response maps are used to obtain their weights so that we can use weights to obtain the fused response map. Finally,the model updating rate is determined according to the similarity of CN feature between the two frames. Qualitative and quantitative analysis of experimental results on the OTB-50 dataset show that the tracking performance of the proposed algorithm is superior to that of other tracking algorithms and it can ensure the real-time performance.

References:

[1] 卢湖川,李佩霞,王栋. 目标跟踪算法综述[J]. 模式识别与人工智能,2018,31(1):61-76.
[2]VOJIR T,NOSKOVA J,MATAS J. Robust scale-adaptive mean-shift for tracking[J]. Pattern Recognition Letters,2014,49:250-258.
[3]ZHANG T Z,XU C S,YANG M H. Learning multi-task correlation particle filters for visual tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2019,41(2):365-378.
[4]KALAL Z,MIKOLAJCZYK K,MATAS J. Tracking-learning-detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(7):1409-1422.
[5]HARE S,GOLODETZ S,SAFFARI A,et al. Struck:structured output tracking with kernels[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(10):2096-2109.
[6]张惊雷,时鹏,温显斌. 基于尺度自适应均值偏移优化的TLD跟踪算法[J]. 控制与决策,2019,34(1):144-150.
[7]CHI Z,LI H,LU H,et al. Dual deep network for visual tracking[J]. IEEE Transactions on Image Processing,2017,26(4):2005-2015.
[8]GORDON D,FARHADI A,FOX D. Re3:real-time recurrent regression networks for visual tracking of generic objects[J]. IEEE Robotics and Automation Letters,2018,3(2):788-795.
[9]WANG Q,ZHANG L,BERTINETTO L,et al. Fast online object tracking and segmentation:a unifying approach[C]//IEEE Conference on Computer Vision and Pattern Recognition. Los Angeles:IEEE,2019:1328-1338.
[10]BOLME D S,BEVERIDGE J R,DRAPER B A,et al. Visual object tracking using adaptive correlation filters[C]//IEEE Conference on Computer Vision and Pattern Recognition. San Francisco:IEEE,2010:2544-2550.
[11]HENRIQUES J F,CASEIRO R,MARTINS P,et al. Exploiting the circulant structure of tracking-by-detection with kernels[C]//European Conference on Computer Vision. Singapore:IEEE,2012:702-715.
[12]HENRIQUES J F,CASEIRO R,MARTINS P,et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(3):583-596.
[13]DANELLJAN M,KHAN F S,FELSBERG M,et al. Adaptive color attributes for real-time visual tracking[C]//IEEE Conference on Computer Vision and Pattern Recognition. Columbus:IEEE,2014:1090-1097.
[14]BERTINETTO L,VALMADRE J,GOLODETZ S,et al. Staple:complementary learners for real-time tracking[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas:IEEE,2016:1401-1409.
[15]茅正冲,陈海东. 基于核相关滤波的长期目标跟踪算法[J]. 激光与光电子学进展,2019,56(1):94-101.
[16]ASHA C S,NARASIMHADHAN A V. Adaptive learning rate for visual tracking using correlation filters[J]. Procedia Computer Science,2016,89:614-622.
[17]陈智,柳培忠,骆炎民,等. 自适应特征融合的多尺度相关滤波目标跟踪算法[J]. 计算机辅助设计与图形学学报,2018,30(11):2063-2073.
[18]WANG M,LIU Y,HUANG Z. Large margin object tracking with circulant feature maps[C]//IEEE Conference on Computer Vision and Pattern Recognition. Honolulu:IEEE,2017:4800-4808.
[19]SINGH G,CHHABRA I. Effective and fast face recognition system using complementary OC-LBP and HOG feature descriptors with SVM classifier[J]. Journal of Information Technology Research,2018,11(1):91-110.
[20]DANELLJAN M,H?GER G,KHAN F S,et al. Discriminative scale space tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(8):1561-1575.
[21]WU Y,LIM J,YANG M H. Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1834-1848.

Memo

Memo:
-
Last Update: 2020-09-15