|Table of Contents|

Numerical Simulation of Soot Formation in Laminar C2H4Opposed-flow Diffusion Flames under Different Pressures(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2020年04期
Page:
16-21
Research Field:
动力工程及工程热物理
Publishing date:

Info

Title:
Numerical Simulation of Soot Formation in Laminar C2H4Opposed-flow Diffusion Flames under Different Pressures
Author(s):
Wang ShengfuXi JianfeiGu ZhongzhuCai Jie
School of Energy and Mechanical Engineering,Nanjing Normal University,Nanjing 210023,China
Keywords:
high pressuresoot formationopposed-flow diffusion flamenumerical simulation
PACS:
TK402
DOI:
10.3969/j.issn.1672-1292.2020.04.003
Abstract:
The opposed-flow diffusion flame model in Chemkin is used to simulate the formation of soot in C2H4 diffusion flames,focusing on the formation of soot particles and some gas phase small molecules and precursors under different pressures. The concentration distributions of various intermediates and soot precursors in C2H4 diffusion flames are investigated under pressure range of 1 to 5 atm in increments of 0.1 atm. The results show that with the increase of pressure,the volume fraction and number density of soot increase rapidly,the content of H2,CH4 and other small molecules decreases,and the formation area of small molecules in the flame surface and gas phase becomes smaller. The rapid increase of PAHs and C2H2 content is realized by HACA mechanism,which accelerates the nucleation and growth rate of soot,and promotes the rapid increase of soot number density and volume fraction.

References:

[1] SEONG H J,BOEHMAN A L. Impact of intake oxygen enrichment on oxidative reactivity and properties of diesel soot[J]. Energy and Fuels,2011,25(2):602-616.
[2]BENTO D S,THOMSON K A,GULDER O L. Soot formation and temperature field structure in laminar propane-air diffusion flames at elevated pressures[J]. Combustion and Flame,2006,145(4):765-778.
[3]SATO H,TREE D R,HODGES J T,et al. A study on the effect of temperature on soot formation in a jet stirred combustor[J]. Symposium(international)on Combustion,1991,23(1):1469-1475.
[4]TREE D R,SVENSSON K I. Soot processes in compression ignition engines[J]. Progress in Energy and Combustion Science,2007,33(3):272-309.
[5]KIM C,XU F,FAETH GM. Soot surface growth and oxidation at pressures up to 8.0 atm in laminar nonpremixed and partially premixed flames[J]. Combustion and Flame,2008,152(3):301-316.
[6]王思文,宋崇林,陈男,等. 甲烷/空气扩散火焰中碳烟颗粒的三维形貌演变[J]. 燃烧科学与技术,2016,22(4):364-369.
[7]顾晨,林柏样,邵灿,等. 温度对预混合乙烯火焰碳烟生成的影响[J]. 内燃机学报,2016,34(2):156-162.
[8]梅俊宇,唐权喜,游小清. 乙烯与乙烷层流预混火焰碳烟生成特性实验研究[J]. 中国电机工程学报,2016,36(16):4505-4512.
[9]罗旻烨,应遥瑶,刘冬. 滞止平板对乙烯射流扩散火焰碳烟特性影响[J]. 工程热物理学报,2018,39(12):2804-2808.
[10]APPEL J,BOCKHORN H,FRENKLACH M. Kinetic modeling of soot formation with detailed chemistry and physics:laminar premixed flames of C2 hydrocarbons[J]. Combustion and Flame,2000,121(1):122-136.
[11]WANG H,FRENKLACH M. A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames[J]. Combustion and Flame,1997,110(1):173-221.
[12]FRENKLACH M,WANG H. Detailed modeling of soot particle nucleation and growth[J]. Symposium(international)on Combustion,1991,23(1):1559-1566.
[13]SCHUETZ C A,FRENKLACH M. Nucleation of soot molecular dynamics simulations of pyrene dimerization[J]. Proceedings of the Combustion Institute,2002,29(2):2307-2314.
[14]HAHN W A,WENDT J O L,TYSON T J. Analysis of the flat laminar opposed jet diffusion flame with finite rate detailed chemical kinetics[J]. Combustion Science and Technology,1981,27:1-17.
[15]袁也,席剑飞,顾中铸,等. H2/CO合成气层流扩散燃烧产物NOx生成机理的数值分析[J]. 热能动力工程,2017,32(12):102-105.

Memo

Memo:
-
Last Update: 2020-12-15