[1] CUNNINGHAM C R,FLYNN J M,SHOKRANI A,et al. Invited review article:strategies and processes for high quality wire arc additive manufacturing manufacturing[J]. Additive Manufacturing,2018,22:672-686.
[2]XIANG D F,WANG Y B,LIU J,et al. Research status of welding rapid prototyping technology[J]. Welding Ttechnology,2012,41(7):1-6.
[3]何冠宇. 电弧增材成形过程电弧及溶滴过渡行为研究[D]. 兰州:兰州理工大学,2016.
[4]余淑荣,程能弟,黄健康,等. 旁路耦合微束等离子弧焊增材制造的热过程[J]. 材料导报,2019,33(1):162-166.
[5]LI P,ZENG S Q,HU X Y. Direct laser fabrication of thin-walled metal parts under open-loop control[J]. International Journal of Machine Tools and Manufacture,2007,47(6):996-1002.
[6]JANDRIC Z,LABUDOVIC M,KOVACEVIC R. Effect of heat sink on microstructure of three-dimensional parts built by welding-based deposition[J]. International Journal of Machine Tools and Manufacture,2004,44(7/8):785-796.
[7]BOLARINWA J K,SALIU O S,GODWIN I E,et al. Review of GTAW welding parameters[J]. Journal of Minerals and Materials Characterization and Engineering,2018,6(5):541-554.
[8]SEN M,MUKHERJEE M,PAL T K. Evaluation of correlations between DP-GMAW process parameters and bead geometry[J]. Welding Journal,2015,94(8):265-279.
[9]MOHAMMED A,TOMáS M. A review of modularization techniques in artificial neural networks[J]. Artificial Intelligence Review,2019,52(1):527-561.
[10]SUGA Y,NARUS M,TOKIWA T. Application of neural network to visual sensing of weld line and automatic tracking in robot welding[J]. Welding in the World,1994,34:275-282.
[11]MADHIARASAN M,DEEPA S N. Comparative analysis on hidden neurons estimation in multi layer perceptron neural networks for wind speed forecasting[J]. Artificial Intelligence Review,2017,48(4):449-471.
[12]YANG S M,WANG Y L,WANG M Y,et al. Excitation function learnable neural network[J]. Journal of Jiangnan University(Natural Science Edition),2015,14(6):689-694.
[13]杨亚超,全惠敏,邓林峰,等. 基于神经网络的焊机参数预测方法[J]. 焊接学报,2018,39(1):32-36,130.
[14]张淑珍,冯振民,于子然. 一种弧焊机器人轨迹跟踪控制方法的研究[J]. 机械制造与自动化,2016,45(6):159-163.
[15]岳中彤. 基于PSO与BP神经网络的脱机手写体汉字识别算法[J]. 信息化研究,2018,44(2):68-70.
[16]YIN H X,WANG K,ZHANG T Z,et al. Wheelset axle box failure prediction of urban rail bogie based on PSO-BP neural network[J]. Complex Systems and Complexity Science,2015,12(4):97-103.
[17]JOSEPH A Y,DOUW G B B. Combining BP with PSO algorithms in weights optimization and ANNs training for mass appraisal of properties[J]. International Journal of Housing Markets and Analysis,2018,11(2):290-314.