|Table of Contents|

Welded Surface Morphology Modeling and PredictionBased on BP Neural Network(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2021年01期
Page:
1-7
Research Field:
控制科学与工程
Publishing date:

Info

Title:
Welded Surface Morphology Modeling and PredictionBased on BP Neural Network
Author(s):
Huang Wuyun1Liu Yijian1Liu Zongxi1Yang Jiquan1Zhu ZhaoWei1Xie Fei1Shi Jianjun2
(1.NARI School of Electrical and Automation Engineering,Nanjing Normal University,Nanjing 210023,China)(2.Nanjing Zhongke Yuchen Laser Technology Co.,Ltd.,Nanjing 210038,China)
Keywords:
weld bead morphologyBP neural networkoptimization solutionPSO algorithm
PACS:
TP183
DOI:
10.3969/j.issn.1672-1292.2021.01.001
Abstract:
A good weld bead provides a guarantee for successful wire arc additive manufacturing,which is affected by various parameters such as welding current,voltage,scanning speed,and wire feed speed. A four-input and two-output BP neural network model is proposed,which is applied to the surface morphology characteristic identification of the weld bead height and width. The particle swarm optimization(PSO)algorithm is used to optimize the neural network weight. Experimental results show that the BP neural network designed in this paper realizes the prediction of the weld bead morphology and that it provides a model basis for the real-time prediction and control of subsequent arc additive manufacturing.

References:

[1] CUNNINGHAM C R,FLYNN J M,SHOKRANI A,et al. Invited review article:strategies and processes for high quality wire arc additive manufacturing manufacturing[J]. Additive Manufacturing,2018,22:672-686.
[2]XIANG D F,WANG Y B,LIU J,et al. Research status of welding rapid prototyping technology[J]. Welding Ttechnology,2012,41(7):1-6.
[3]何冠宇. 电弧增材成形过程电弧及溶滴过渡行为研究[D]. 兰州:兰州理工大学,2016.
[4]余淑荣,程能弟,黄健康,等. 旁路耦合微束等离子弧焊增材制造的热过程[J]. 材料导报,2019,33(1):162-166.
[5]LI P,ZENG S Q,HU X Y. Direct laser fabrication of thin-walled metal parts under open-loop control[J]. International Journal of Machine Tools and Manufacture,2007,47(6):996-1002.
[6]JANDRIC Z,LABUDOVIC M,KOVACEVIC R. Effect of heat sink on microstructure of three-dimensional parts built by welding-based deposition[J]. International Journal of Machine Tools and Manufacture,2004,44(7/8):785-796.
[7]BOLARINWA J K,SALIU O S,GODWIN I E,et al. Review of GTAW welding parameters[J]. Journal of Minerals and Materials Characterization and Engineering,2018,6(5):541-554.
[8]SEN M,MUKHERJEE M,PAL T K. Evaluation of correlations between DP-GMAW process parameters and bead geometry[J]. Welding Journal,2015,94(8):265-279.
[9]MOHAMMED A,TOMáS M. A review of modularization techniques in artificial neural networks[J]. Artificial Intelligence Review,2019,52(1):527-561.
[10]SUGA Y,NARUS M,TOKIWA T. Application of neural network to visual sensing of weld line and automatic tracking in robot welding[J]. Welding in the World,1994,34:275-282.
[11]MADHIARASAN M,DEEPA S N. Comparative analysis on hidden neurons estimation in multi layer perceptron neural networks for wind speed forecasting[J]. Artificial Intelligence Review,2017,48(4):449-471.
[12]YANG S M,WANG Y L,WANG M Y,et al. Excitation function learnable neural network[J]. Journal of Jiangnan University(Natural Science Edition),2015,14(6):689-694.
[13]杨亚超,全惠敏,邓林峰,等. 基于神经网络的焊机参数预测方法[J]. 焊接学报,2018,39(1):32-36,130.
[14]张淑珍,冯振民,于子然. 一种弧焊机器人轨迹跟踪控制方法的研究[J]. 机械制造与自动化,2016,45(6):159-163.
[15]岳中彤. 基于PSO与BP神经网络的脱机手写体汉字识别算法[J]. 信息化研究,2018,44(2):68-70.
[16]YIN H X,WANG K,ZHANG T Z,et al. Wheelset axle box failure prediction of urban rail bogie based on PSO-BP neural network[J]. Complex Systems and Complexity Science,2015,12(4):97-103.
[17]JOSEPH A Y,DOUW G B B. Combining BP with PSO algorithms in weights optimization and ANNs training for mass appraisal of properties[J]. International Journal of Housing Markets and Analysis,2018,11(2):290-314.

Memo

Memo:
-
Last Update: 2021-03-15