|Table of Contents|

Image Encryption Algorithm Based on Compressed Sensing and DNA Coding(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2021年01期
Page:
8-14
Research Field:
计算机科学与技术
Publishing date:

Info

Title:
Image Encryption Algorithm Based on Compressed Sensing and DNA Coding
Author(s):
Gong ShuaiHuo ChengXie Dong
School of Computer and Information,Anhui Normal University,Wuhu 241002,China
Keywords:
compressed sensingDNA codingtent mapimage encryption
PACS:
TP309
DOI:
10.3969/j.issn.1672-1292.2021.01.002
Abstract:
In the paper,the plaintext images are firstly compressed by compressed sensing with post sparsing scheme,and then the DNA encoding rules and the chaotic matrix generated by the tent map are used to conduct regular operations to pluralize the singular encoding and diffuse the pixels of the images. Finally,the diffusion matrix is divided and merged to form a ciphertext image. The experimental results show that the proposed image encryption scheme has a stronger anti-attacking character and a better reconstructing effect.

References:

[1] CANDES E J,ROMBERG J. Sparsity and incoherence in compressive sampling[J]. Inverse Problems,2007,23(3):969-985.
[2]CANDES E J,TAO T. Near-optional signal recovery from random projections:universal encoding strategies[J]. IEEE Transactions on Information Theory,2006,52(12):5406-5425.
[3]CANDES E J,TAO T. Decoding by linear programming[J]. IEEE Transaction on Information Theory,2005,51(12):4203-4215.
[4]XIE D,PENG H,LI L,et al. A secure and efficient scalable secret image sharing scheme with flexible shadow sizes[J]. Plos one,2017,12(1):0168674.
[5]ZHOU N,ZHANG A,WU J,et al. Novel hybrid image compression-encryption algorithm based on compressive sensing[J]. Optik,2014,125(18):5075-5080.
[6]CAMBARERI V,MANGIA M,PARESCH F,et al. Low-complexity multiclass encryption by compressed sensing[J]. IEEE Transactions on Signal Processing,2015,63(9):2183-2195.
[7]CHAI X,GAN Z,CHEN Y,et al. A visually secure image encryption scheme based on compressive sensing[J]. Signal Processing,2017,134:35-51.
[8]ZHANG Y Q,WANG X Y,LIU J,et al. An image encryption scheme based on the MLNCML system using DNA sequences[J]. Optics and Lasers in Engineering,2016,82:95-103.
[9]王光义,任国瑞,崔明章,等. 基于混沌占空置乱和DNA编码的图像加密算法[J]. 计算机应用与软件,2016,33(6):298-302.
[10]ADLEMAN L. Molecular computation of solution to combinatorial problems[J]. Science,1994,66(11):1021-1024.
[11]ENAYATIFAR R,ABDULLAH A H,IANIN I F. Chaos-based image encryption using a hybrid genetic algorithm and a DNA sequence[J]. Optics and Lasers in Engineering,2014,56(5):83-93.
[12]李红凯,裘国永,王涛. 基于DNA编码的随机真彩图加密算法[J]. 计算机应用研究,2016,49(1):1132-1136.
[13]李孝东,周彩兰,黄林荃. 基于DNA编码的安全高效的图像加密算法[J]. 计算机应用与软件,2018,35(1):318-324.
[14]GILBERT A C,STRAUKRISHNAN M,STRAUSS M. Improved time bounds for near-optimal sparse Fourier representations[C]//Proceedings of SPIE Wavelets XI. San Diego,USA,2005:398-412.
[15]GILBERT A C,STRAUSS M J,TROOP J A,et al. Algorithmic linear dimension reduction in the -1 norm for sparse vectors[C]//Proceedings of the 44th Annual Allerton Conference on Communication,Control and Computing. Monticello,USA,2006.
[16]TROOP J A,GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory,2007,53(12):4655-4666.
[17]MALLAT S G,ZHANG Z. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing,1993,41(2):3397-3415.
[18]NESTEROV Y. Gradient methods for minimizing composite objective function[J]. Mathematical Programming,2013,140(1):125-161.

Memo

Memo:
-
Last Update: 2021-03-15