|Table of Contents|

On the Application of Entransy Dissipation in the Performance Evaluation ofthe Parallel-Flow Channel Heat Pipe Exchanger(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2021年02期
Page:
9-14
Research Field:
动力工程及工程热物理
Publishing date:

Info

Title:
On the Application of Entransy Dissipation in the Performance Evaluation ofthe Parallel-Flow Channel Heat Pipe Exchanger
Author(s):
Wu Zhe1Li Qihe12Zhao Xiaobao12
(1.School of Energy and Mechanical Engineering,Nanjing Normal University,Nanjing 210023,China)(2.Engineering Laboratory of Energy System Conversion and Emission Reduction of Jiangsu Province,Nanjing Normal University,Nanjing 210023,China)
Keywords:
heat pipe exchangerentransy dissipationtemperature differenceliquid filling rateinclination
PACS:
TK172.4
DOI:
10.3969/j.issn.1672-1292.2021.02.002
Abstract:
Entransy dissipation is used as a invertibility judgment in the heat transfer process,which can be applied to heat exchanger optimization. In this paper,we investigates the effects of temperature difference,liquid filling rate,inclination and approach velocity of the heat pipe exchanger on entransy dissipation.The performance test of the small channel heat pipe exchanger is carried out by using the enthalpy difference laboratory. The results show that the entransy dissipation increases as the temperature difference increasing. With the increase of liquid filling rate,the entransy dissipation increases first and then decreases. The change of entransy dissipation increases with the increase of the liquid filling rate,as the temperature difference increases. The entransy dissipation is smaller with increasing inclination than without inclination. The entransy dissipation decreases with the increase of the approach velocity,and the decreasing speed increases as the increase of temperature difference. In the case of same exchanging heat quantity and the entransy dissipation is the smallest,the system works at the optimal operation.

References:

[1] ADRIAN B J A. Advanced Engineering Thermodynamics[M]. New Jersey:John Wiley and Sons,1988.
[2]过增元,程新广,夏再忠. 最小热量传递势容耗散原理及其在导热优化中的应用[J]. 科学通报,2003,48(1):21-25.
[3]GUO Z Y,ZHU H Y,LIANG X G. Entransy—a physical quantity describing heat transfer ability[J]. International Journal of Heat and Mass Transfer,2007,50(13/14):2545-2556.
[4]CHEN X,ZHAO T,ZHANG M Q,et al. Entropy and entransy in convective heat transfer optimization:a review and perspective[J]. International Journal of Heat and Mass Transfer,2019,137:1191-1220.
[5]XU X,WU L. Heat transfer optimization of blast furnace stave based on entransy dissipation and entropy generation analysis[J]. Heat Transfer Research,2019,50(5):501-517.
[6]程雪涛,梁新刚,徐向华. 火积的微观表述[J]. 物理学报,2011,60(6):150-156.
[7]程雪涛,梁新刚. 微观状态数与可用火积的关系[J]. 科学通报,2012,57(14):1263-1269.
[8]韩光泽,过增元. 导热能力损耗的机理及其数学表述[J]. 中国电机工程学报,2007,30(17):98-102.
[9]徐迅,吴俐俊. 基于火积耗散热阻的新型板式省煤器传热分析[J]. 热能动力工程,2019,34(12):62-67.
[10]WANG W H,CHENG X T,LIANG X G. Entransy definition and its balance equation for heat transfer with vaporization processes[J]. International Journal of Heat Mass Transfer,2015,83:536-544.
[11]程新广,李志信,过增元. 热传导中的变分原理[J]. 工程热物理学报,2004,25(3):457-459.
[12]夏少军,陈林根,孙丰瑞. 换热器火积散最小优化[J]. 科学通报,2009,54(15):2240-2246.
[13]王慧儒,刘振宇,吴慧英. 基于火积理论的多级套管式相变蓄热系统优化[J]. 热科学与技术,2019,18(6):431-437.
[14]梁新刚,陈群,过增元. 传热火积理论及其应用[M]. 北京:科学出版社,2020.

Memo

Memo:
-
Last Update: 2021-06-30