|Table of Contents|

Microsatellite Distribution in the Whole Genome of Ageneiosus marmoratus(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2021年02期
Page:
65-71
Research Field:
农业工程
Publishing date:

Info

Title:
Microsatellite Distribution in the Whole Genome of Ageneiosus marmoratus
Author(s):
Su Mengyuan12Yang Wenshan12Tang Rongye12Xu Jiejie12Wang Tao12Yin Shaowu12
(1.School of Marine Science and Engineering,Nanjing Normal University,Nanjing 210023,China)(2.Jiangsu Province Engineering Research Center for Aquati Animals Breedingand Green Efficient Aquacultural Technology,Nanjing 210023,China)
Keywords:
Ageneiosus marmoratusmicrosatellitegenomedistribution characteristics
PACS:
S917
DOI:
10.3969/j.issn.1672-1292.2021.02.011
Abstract:
According to the complete genome sequence of Ageneiosus marmoratus published on NCBI,the microsatellites of the whole genome of Ageneiosus marmoratus are screened and analyzed by using MISA software. The results are as follows:there are 336 037 microsatellite sequences in the whole genome of Ageneiosus marmoratus(about 1.03 Gb),and the abundance is 326/MB. The total length of microsatellites is 7 720 686 bp,accounting for 0.75% of the whole genome. Among them,the number of microsatellites with two bases is the most,which is 145 318,accounting for 43.24% of the total number of microsatellites,followed by single base(37.12%),triple base(11.00%),four base(7.39%),five base(1.04%)and six base(0.21%). The dominant base types of microsatellites in the whole genome of Ageneiosus marmoratus are A,AC,AG,AT,AAT,AAAT,TATC,AAG,AAC and TGA,with a total of 305 243,accounting for 90.84% of the total number of microsatellites.

References:

[1] HAMADA H,PETRINO M G,KAKUNAGA T. A novel repeated element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes[J]. Proceedings of the National Academy of Sciences of the United States of America,1982,79(7):6465-6469.
[2]TAUTZ D. Hypervariability of simple sequences as a general source for polymorphic DNA markers[J]. Nucleic Acids Research,1989,17(16):6463-6471.
[3]杨纪青,袁磊,陈洪萍. 烟草丛顶病毒完整基因组上微卫星分布[J]. 湖北农业科学,2011,50(3):603-605.
[4]乔麦菊,冉江洪,张和民. 微卫星标记在大熊猫研究中的应用进展[J]. 兽类学报,2019,39(1):103-110.
[5]刘旭,丁由中. 分子生物学技术应用于野生动物保护及扩散研究概况[J]. 野生动物学报,2019,40(2):497-501.
[6]王丰,张猛,沈玉帮,等. 青鱼微卫星标记的开发与特性分析[J]. 动物学杂志,2019,54(1):57-65.
[7]沙航,罗相忠,邹桂伟,等. 长江中游鳙群体的微卫星遗传多样性分析[J]. 淡水渔业,2020,50(4):12-17.
[8]田玉苗,盛清宇,袁立成,等. 长白山北部西伯利亚狍局域种群间的基因流[J]. 野生动物学报,2020,41(3):551-559.
[9]阮惠婷,徐姗楠,李敏,等. 飘鱼微卫星位点的筛选及珠江流域5个地理群体的遗传多样性分析[J]. 水生生物学报,2020,44(3):501-508.
[10]商鹏,郭新颖,张健,等. 藏马微卫星标记遗传多样性研究[J]. 中国农业大学学报,2019,24(9):98-104.
[11]黄承勤,黄英毅,黄欣,等. 湖栖鳍虾虎鱼微卫星DNA标记的开发与群体遗传多样性分析[J]. 动物学杂志,2020,55(1):61-76.
[12]王豆,许冠,王洪永,等. 中国圈养林麝微卫星DNA多样性研究[J]. 兽类学报,2019,39(6):599-607.
[13]朱克诚,宋岭,刘宝锁,等. 黄鳍棘鲷家系亲缘关系鉴定[J]. 水产学报,2020,44(3):351-357.
[14]袁耀华,耿广耀,杨淑慧,等. 非洲企鹅微卫星DNA的筛选及其遗传多样性分析[J]. 野生动物学报,2019,40(3):664-669.
[15]FAO-FIES. Aquatic sciences and fisheries information system(ASFIS)species list[EB/OL]. [2020-08-13]. htttps://www.fao.org/fishery/collection/asfis/en.
[16]ZHOU T,LI N,JIN Y L,et al. Chemokine C-C motif ligand 33 is a key regulator of teleost fish barbel development[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(22):5018-5027.
[17]徐杰杰,郑翔,李杰,等. 黄颡鱼(Pelteobagrus fulvidraco)全基因组微卫星分布特征研究[J]. 基因组学与应用生物学,2020,39(12):5488-5498.
[18]徐杰杰,郑翔,张鑫宇,等. 4种河鲀全基因组微卫星分布特征分析研究[J/OL]. 基因组学与应用生物学:1-11[2020-08-13]. http://kns.cnki.net/kcms/detail/45.1369.q.20191126.1019.002.html.
[19]崔建洲,申雪艳,杨官品,等. 红鳍东方鲀基因组微卫星特征分析[J]. 中国海洋大学学报(自然科学版),2006,36(2):249-254,272.
[20]SUBRAMANIAN S,MISHRA R K,SINGH L. Genome-wide analysis of microsatellite repeats in humans:their abundance and density in specific genomic regions[J]. Genome Biology,2003,4(2):R13.
[21]涂飞云,刘俊,韩卫杰,等. 食蟹猴全基因组微卫星分布特征分析[J]. 野生动物学报,2018,39(2):400-404.
[22]黄杰,刘磊,杨波,等. 普通鸬鹚基因组微卫星分布规律研究[J]. 野生动物学报,2020,41(1):108-114.
[23]黄杰,杜联明,李玉芝,等. 红原鸡全基因组中微卫星分布规律研究[J]. 四川动物,2012,31(3):358-363.
[24]甘丽萍,田辉,唐恒,等. 6种鳞翅目昆虫全基因组SSR分布规律[J/OL]. 基因组学与应用生物学:1-10[2020-09-15]. http://kns.cnki.net/kcms/detail/45.1369.Q.20190906.1548.004.html.
[25]HANCOCK J M. Simple sequences and the expanding genome[J]. BioEssays:News and Reviews in Molecular,Cellular and Developmental Biology,1996,18(5):421-425.
[26]涂飞云,刘晓华,杜联明,等. 大鼠全基因组微卫星分布特征研究[J]. 江西农业大学学报,2015,37(4):708-711.
[27]SCHUG M D,WETTERSTRAND K A,GAUDETTE M S,et al. The distribution and frequency of microsatellite loci in drosophila melanogaster[J]. Molecular Ecology,1998,7(1):57-70.
[28]魏朝明,孔光耀,廉振民,等. 蜜蜂全基因组中微卫星的丰度及其分布[J]. 昆虫知识,2007,44(4):501-504.
[29]崔凯,岳碧松. 绿尾虹雉全基因组微卫星分布规律研究[J]. 四川动物,2018,37(5):533-540.
[30]黄杰,周瑜,刘与之,等. 基于454 GS FLX高通量测序的四川山鹧鸪基因组微卫星特征分析[J]. 四川动物,2015,34(1):8-14.
[31]戚文华,蒋雪梅,肖国生,等. 牛和绵羊全基因组微卫星序列的搜索及其生物信息学分析[J]. 畜牧兽医学报,2013,44(11):1724-1733.
[32]戚文华,蒋雪梅,肖国生,等. 猪全基因组中微卫星分布规律[J]. 畜牧与兽医,2014,46(8):9-13.
[33]汪自立,黄杰,杜联明,等. 二斑叶螨和肩突硬蜱基因组微卫星分布规律研究[J]. 四川动物,2013,32(4):481-486.
[34]KATTI M V,RANJEKAR P K,GUPTA V S. Differential distribution of simple sequence repeats in eukaryotic genome sequences[J]. Molecular Biology and Evolution,2001,18(7):1161-1167.
[35]王晨,杜联明,李鹏,等. 德国小蠊全基因组中微卫星分布规律[J]. 昆虫学报,2015,58(10):1037-1045.
[36]余泉友,李斌,李关荣,等. 蚊子全基因组中微卫星的丰度及其分布(英文)[J]. 生物化学与生物物理进展,2005,32(5):435-441.
[37]BENNETT P. Demystified microsatellites[J]. Molecular Pathology,2000,53(4):177-183.
[38]王小婷,张玉娟,何秀,等. 中华按蚊全基因组微卫星的鉴定、特征及分布规律[J]. 昆虫学报,2016,59(10):1058-1068.
[39]HUANG J,LI Y Z,DU L M,et al. Genome-wide survey and analysis of microsatellites in giant panda(Ailuropoda melanoleuca),with a focus on the applications of a novel microsatellite marker system[J]. BMC Genomics,2015,16:61.
[40]段永楠,刘奕,胡隐昌,等. 美丽硬仆骨舌鱼全基因组微卫星分布规律特征[J]. 中国农学通报,2019,35(23):152-158.
[41]SCHLOTTERER C,TAUTZ D. Slippage synthesis of simple sequence DNA[J]. Nucleic Acids Research,1992,20(2):211-215.
[42]XU Y T,HU Z X,WANG C,et al. Characterization of perfect microsatellite based on genome-wide and chromosome level in Rhesus monkey(Macaca mulatta)[J]. Gene,2016,592(2):269-275.
[43]MORGANTE M,HANAFEY M,POWELL W. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes[J]. Nature Genetics,2002,30(2):194-200.
[44]PEARSON C E,SINDEN R R. Trinucleotide repeat DNA structures:dynamic mutations from dynamic DNA[J]. Current Opinion in Structural Biology,1998,8(3):321-330.
[45]罗文永,胡骏,李晓方. 微卫星序列及其应用[J]. 遗传,2003,25(5):615-619.
[46]SCHLOTTERER C. Genome evolution:are microsatellites really simple sequences?[J]. Current Biology,1998,8(4):132-134.
[47]GALLIE D R. The cap and poly(A)tail function synergistically to regulate mRNA translational efficiency[J]. Genes Development,1991,5(11):2108-2116.
[48]BIRD A P. CpG-rich islands and the function of DNA methylation[J]. Nature,1986,321(6067):209-213.
[49]黄杰,原宝东,杨承忠. 虎皮鹦鹉全基因组中微卫星分布规律研究[J]. 野生动物学报,2017,38(3):422-426.
[50]WIERDL M,DOMINSKA M,PETES T D. Microsatellite instability in yeast:dependence on the length of the microsatellite[J]. Genetics,1997,146(3):769-779.
[51]LEOPOLDINO A M,PENA S D J. The mutational spectrum of human autosomal tetranucleotide microsatellites[J]. Human Mutation,2003,21(1):71-79.
[52]ELLEGREN H. Heterogeneous mutation processes in human microsatellite DNA sequences[J]. Nature Genetics,2000,24(4):400-402.

Memo

Memo:
-
Last Update: 2021-06-30