[1] 魏立新,吴绍坤,孙浩,等. 基于多行为的移动机器人路径规划[J]. 控制与决策,2019,34(12):2721-2726.
[2]康玉祥,姜春音,秦运海,等. 基于改进PSO算法的机器人路径规划及实验[J]. 机器人,2020,42(1):71-78.
[3]王晓燕,杨乐,张宇,等. 基于改进势场蚁群算法的机器人路径规划[J]. 控制与决策,2018,33(10):1775-1781.
[4]魏彤,龙琛. 基于改进遗传算法的移动机器人路径规划[J]. 北京航空航天大学学报,2020,46(4):703-711.
[5]张晓莉,杨亚新,谢永成. 改进的蚁群算法在机器人路径规划上的应用[J]. 计算机工程与应用,2020,56(2):29-34.
[6]于振中,李强,樊启高. 智能仿生算法在移动机器人路径规划优化中的应用综述[J]. 计算机应用研究,2019,36(11):3210-3219.
[7]BINITHA S,SATHYA S S. A survey of bio inspired optimization algorithm[J]. International Journal of Soft Computing & Engineering,2012,2(2):137-151.
[8]张玮,马焱,赵捍东,等. 基于改进烟花-蚁群混合算法的智能移动体避障路径规划[J]. 控制与决策,2019,34(2):335-343.
[9]MILAD N,ESMAEEL K,SAMIRA D. Multi-objective multi-robot path planning in continuous environment using an enhanced genetic algorithm[J]. Expert Systems with Applications,2020,115:106-120.
[10]陈军章. 改进人工鱼群算法的机器人路径规划及跟踪[J]. 机械设计与制造,2019(4):251-255.
[11]CAO J,LI Y,ZHAO S Q,et al. Genetic-algorithm-based global path planning for AUV[C]//2016 9th International Symposium on Computational Intelligence and Design(ISCID).Hangzhou,China:IEEE,2016:16637599.
[12]YAO Z G,MA L Y. A static environment-based path planning method by using genetic algorithm[C]//2010 International Conference on Computing,Control and Industrial Engineering. Wuhan,China:IEEE,2010:11391889.
[13]LAMINI C,BENHLIMA S,ELBEKRI A. Genetic algorithm based approach for autonomous mobile robot path planning[J]. Procedia Computer Science,2018,127:180-189.[14]QU H,XING K,ALEXANDER T. An improved genetic algorithm with co-evolutionary strategy for global path planning of multiple mobile robots[J]. Neurocomputing,2013,120:509-517.
[15]孙波,姜平,周根荣,等. 改进遗传算法在移动机器人路径规划中的应用[J]. 计算机工程与应用,2019,55(17):162-168.
[16]徐力,刘云华,王启富. 自适应遗传算法在机器人路径规划的应用[J]. 计算机工程与应用,2020,56(18):36-41.
[17]何庆,吴意乐,徐同伟. 改进遗传模拟退火算法在TSP优化中的应用[J]. 控制与决策,2018,33(2):219-225.
[18]江涛,张志安,程志,等. 改进遗传算法与领航跟随法的机器人编队方法[J]. 计算机工程与应用,2020,56(3):240-245.