|Table of Contents|

Robot Path Planning Method Based on Improved Genetic Algorithm(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2021年03期
Page:
49-55
Research Field:
计算机科学与技术
Publishing date:

Info

Title:
Robot Path Planning Method Based on Improved Genetic Algorithm
Author(s):
Tang Yunfeng12Zhao Jing23Xie Fei14Li Xinhuang23Lin Zhichang23Liu Yijian1
(1.School of Electrical and Automation Engineering,Nanjing Normal University,Nanjing 210023,China)(2.College of Automation and College of Artificial Intelligence,Nanjing University of Posts and Telecommunications,Nanjing 210023,China)(3.Jiangsu Engineering Laboratory for Internet of Things and Intelligent Robotics,Nanjing 210023,China)(4.Nanjing Zhongke Raycham Laser Technology Co.,Ltd.,Nanjing 210038,China)
Keywords:
robotgenetic algorithmsmoothness functionelite retentionpath planning
PACS:
TP18; TP242
DOI:
10.3969/j.issn.1672-1292.2021.03.007
Abstract:
An improved genetic algorithm is proposed to solve the problem of slow convergence rate and easy to fall into the local optimal solution in robot path planning. The smoothness function with penalty term is added to the fitness function. The elite retention mechanism is introduced to retain the optimal individual of each generation. The crossover probability and mutation probability are adjusted adaptively so that they vary with the number of evolutions. MATLAB is used to simulate and compare the two obstacle maps with the other two algorithms. Experimental results show that the improved algorithm effectively reduces the number of turns of robots in path planning,improve the ability to escape from the local optimal path,and has a stronger ability to find the optimal solution.

References:

[1] 魏立新,吴绍坤,孙浩,等. 基于多行为的移动机器人路径规划[J]. 控制与决策,2019,34(12):2721-2726.
[2]康玉祥,姜春音,秦运海,等. 基于改进PSO算法的机器人路径规划及实验[J]. 机器人,2020,42(1):71-78.
[3]王晓燕,杨乐,张宇,等. 基于改进势场蚁群算法的机器人路径规划[J]. 控制与决策,2018,33(10):1775-1781.
[4]魏彤,龙琛. 基于改进遗传算法的移动机器人路径规划[J]. 北京航空航天大学学报,2020,46(4):703-711.
[5]张晓莉,杨亚新,谢永成. 改进的蚁群算法在机器人路径规划上的应用[J]. 计算机工程与应用,2020,56(2):29-34.
[6]于振中,李强,樊启高. 智能仿生算法在移动机器人路径规划优化中的应用综述[J]. 计算机应用研究,2019,36(11):3210-3219.
[7]BINITHA S,SATHYA S S. A survey of bio inspired optimization algorithm[J]. International Journal of Soft Computing & Engineering,2012,2(2):137-151.
[8]张玮,马焱,赵捍东,等. 基于改进烟花-蚁群混合算法的智能移动体避障路径规划[J]. 控制与决策,2019,34(2):335-343.
[9]MILAD N,ESMAEEL K,SAMIRA D. Multi-objective multi-robot path planning in continuous environment using an enhanced genetic algorithm[J]. Expert Systems with Applications,2020,115:106-120.
[10]陈军章. 改进人工鱼群算法的机器人路径规划及跟踪[J]. 机械设计与制造,2019(4):251-255.
[11]CAO J,LI Y,ZHAO S Q,et al. Genetic-algorithm-based global path planning for AUV[C]//2016 9th International Symposium on Computational Intelligence and Design(ISCID).Hangzhou,China:IEEE,2016:16637599.
[12]YAO Z G,MA L Y. A static environment-based path planning method by using genetic algorithm[C]//2010 International Conference on Computing,Control and Industrial Engineering. Wuhan,China:IEEE,2010:11391889.
[13]LAMINI C,BENHLIMA S,ELBEKRI A. Genetic algorithm based approach for autonomous mobile robot path planning[J]. Procedia Computer Science,2018,127:180-189.[14]QU H,XING K,ALEXANDER T. An improved genetic algorithm with co-evolutionary strategy for global path planning of multiple mobile robots[J]. Neurocomputing,2013,120:509-517.
[15]孙波,姜平,周根荣,等. 改进遗传算法在移动机器人路径规划中的应用[J]. 计算机工程与应用,2019,55(17):162-168.
[16]徐力,刘云华,王启富. 自适应遗传算法在机器人路径规划的应用[J]. 计算机工程与应用,2020,56(18):36-41.
[17]何庆,吴意乐,徐同伟. 改进遗传模拟退火算法在TSP优化中的应用[J]. 控制与决策,2018,33(2):219-225.
[18]江涛,张志安,程志,等. 改进遗传算法与领航跟随法的机器人编队方法[J]. 计算机工程与应用,2020,56(3):240-245.

Memo

Memo:
-
Last Update: 2021-09-30