|Table of Contents|

Method of Swarm Aggregation and Control for Intelligent RobotBased on Three-dimensional Gene Regulatory Network(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2022年01期
Page:
9-15
Research Field:
机器学习
Publishing date:

Info

Title:
Method of Swarm Aggregation and Control for Intelligent RobotBased on Three-dimensional Gene Regulatory Network
Author(s):
Fan Zhun12Ma Peili12Zhu Guijie12Xie Minchong1Chen Tianshan1Xie Fei1Shi Ze12Bao Weidong3Zhu Xiaomin3
(1.College of Engineering,Shantou University,Shantou 515063,China)(2.Key Lab of Digital Signal and Image Processing of Guangdong Province,Shantou University,Shantou 515063,China)(3.College of Systems Engineering,National University of Defense Technology,Changsha 410073,China)
Keywords:
intelligent swarm robotsgene regulatory networkthree-dimensional spaceswarm aggregation morphologydistributed trapping
PACS:
TP242.6
DOI:
10.3969/j.issn.1672-1292.2022.01.002
Abstract:
To address the problem that the traditional gene regulatory network(GRN)model could not generate suitable swarm aggregation morphology patterns in three-dimensional space,an aggregation and control method of swarm intelligent robot based on 3D GRN is proposed. Then,the performance of the method is tested in three-dimensional complex scenes in entrapping task. Furthermore,the V-rep platform is used to simulate real scenarios and verify the efficacy of the model when the environment is added to the physics engine. Simulation results show that the proposed method has good performance and is robust under complex scenarios.

References:

[1] 陈祥章. 基于单目视觉的机器人人工势场法路径规划研究[J]. 南京师大学报(自然科学版),2014,37(1):61-65.
[2]PANAGOU D,KUMAR V. Cooperative visibility maintenance for leader-follower formations in obstacle environments[J]. IEEE Transactions on Robotics,2014,30(4):831-844.
[3]YANG J,WANG X,BAUER P. V-shaped formation control for robotic swarms constrained by field of view[J]. Applied Sciences,2018,8(11):2120.
[4]OROZCO-ROSAS U,MONTIEL O,SEPAU’G1LVEDA R. Mobile robot path planning using membrane evolutionary artificial potential field[J]. Applied Soft Computing,2019,77:236-251.
[5]GE H Q,CHEN G B,XU G. Multi-AUV cooperative target hunting based on improved potential field in a surface-water environment[J]. Applied Sciences,2018,8(6):973.
[6]屈正庚,杨川. 基于改进蚁群算法的移动机器人全局轨迹规划研究[J]. 南京师大学报(自然科学版),2015,38(1):81-85.
[7]XU H X,GUAN H B,LIANG A L,et al. A multi-robot pattern formation algorithm based on distributed swarm intelligence[C]//Proceeding of the 2010 Second International Conference on Computer Engineering and Applications. Bali,Indonesia:IEEE,2010,1:71-75.
[8]YANG B,DING Y S,JIN Y C,et al. Self-organized swarm robot for target search and trapping inspired by bacterial chemotaxis[J]. Robotics and Autonomous Systems,2015,72:83-92.
[9]王原,马力,王凌,等. 智能机器人可变参数群体控制模型的多目标优化方法[J]. 中国科学:技术科学,2020,50(5):526-537.
[10]JIN Y C,MENG Y. Morphogenetic robotics:an emerging new field in developmental robotics[J]. IEEE Transactions on Systems,Man,and Cybernetics,Part C(Applications and Reviews),2010,41(2):145-160.
[11]JIN Y C,GUO H L,MENG Y. A hierarchical gene regulatory network for adaptive multirobot pattern generation[J]. IEEE Transactions on Systems,Man,and Cybernetics,Part B(Cybernetics),2012,42(3):805-816.
[12]PENG X G,ZHANG S,LEI X K. Multi-target trapping in constrained environments using gene regulatory network-based pattern formation[J]. International Journal of Advanced Robotic Systems,2016,13(5):1729881416670152.
[13]OH H D,JIN Y C. Evolving hierarchical gene regulatory networks for morphogenetic pattern formation of swarm robots[C]//2014 IEEE Congress on Evolutionary Computation(CEC). Beijing,China:IEEE,2014:776-783.
[14]FEDELE G,D’ALFONSO L. A model for swarm formation with reference tracking[C]//2017 IEEE 56th Annual Conference on Decision and Control(CDC). Melbourne,Australia:IEEE,2017:381-386.
[15]陈铭治,朱大奇. FMM 与改进 GBNN 模型相结合的多 AUV 实时围捕算法[J]. 控制与决策,2020,35(12):2845-2854.
[16]MENG Y,GUO H L,JIN Y C. A morphogenetic approach to flexible and robust shape formation for swarm robotic systems[J]. Robotics and Autonomous Systems,2013,61(1):25-38.
[17]BRACCINI M. Applications of biological cell models in robotics[J]. arXiv Preprint arXiv:1712.02303,2017.
[18]LEE L P. The transverse Mercator projection of the entire spheroid[J]. Survey Review,1962,16(123):208-217.

Memo

Memo:
-
Last Update: 2022-03-15