[1] 夏菁,丁世飞. 基于低秩稀疏约束的自权重多视角子空间聚类[J]. 南京大学学报(自然科学),2020,56(6):862-869.
[2]唐启凡,张玉龙,何士豪,等. 自适应多视角子空间聚类[J]. 西安交通大学学报,2021,55(5):102-112.
[3]李凯鑫. 基于低秩的子空间聚类算法[D]. 广州:华南理工大学,2018.
[4]侯成浩. 面向多视数据的稀疏子空间聚类方法研究[D]. 北京:北京工业大学,2017.
[5]LIU G C,LIN Z C,YU Y. Robust subspace segmentation by low-rank representation[C]//Proceedings of the 27th International Conference on Machine Learning. Haifa,Israel:Omnipress,2010:663-670.
[6]江楠,张国明,王俊淑,等. 融合低秩和形态学的高光谱影像特征提取[J]. 南京师范大学学报(工程技术版),2020,20(2):52-58.
[7]ELHAMIFAR E,VIDAL R. Sparse subspace clustering[C]//Proceedings of the 2009 IEEE Conference on Computer Vision & Pattern Recognition. Miami,USA:IEEE,2009:2790-2797.
[8]XUE Z,DU J P,DU D W,et al. Deep low-rank subspace ensemble for multi-view clustering[J]. Information Sciences,2019,482:210-227.
[9]BRBIAC’1 M,KOPRIVA I. Multi-view low-rank sparse subspace clustering[J]. Pattern Recognition,2018,73:247-258.
[10]DING C H Q,LI T,JORDAN M I. Convex and semi-nonnegative matrix factorizations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(1):45-55.
[11]BOYD S,PARIKH N,CHU E,et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends in Machine Learning,2011,3(1):1-122.
[12]CAI J F,CANDèS E J,SHEN Z W. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization,2010,20(4):1956-1982.
[13]DAUBECHIES I,DEFRISE M,DE MOL C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[J]. Communications on Pure and Applied Mathematics,2004,57(11):1413-1457.
[14]YU S X,SHI J B. Multiclass spectral clustering[C]//Proceedings of the 9th IEEE International Conference on Computer Vision. Nice,France:IEEE,2003.
[15]ZHAN K,NIE F P,WANG J,et al. Multiview consensus graph clustering[J]. IEEE Transactions on Image Processing,2019,28(3):1261-1270.
[16]ZHAN K,ZHANG C Q,GUAN J P,et al. Graph learning for multiview clustering[J]. IEEE Transactions on Cybernetics,2018,48(10):2887-2895.
[17]XIA R K,PAN Y,DU L,et al. Robust multi-view spectral clustering via low-rank and sparse decomposition[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence. Quebec,Canada:AAAI Press,2014:2149-2155.
[18]ZONG L L,ZHANG X C,LIU X Y,et al. Weighted multi-view spectral clustering based on spectral perturbation[C]//Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence. New Orleans,USA:AAAI Press,2018.