|Table of Contents|

Cuckoo Search Algorithm with Global-Local Best Scaling Factor(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2022年02期
Page:
56-62
Research Field:
计算机科学与技术
Publishing date:

Info

Title:
Cuckoo Search Algorithm with Global-Local Best Scaling Factor
Author(s):
Liang Maomao12Xiao Wen12Wang Lijin12Zhong Yiwen12
(1.College of Computer and Information Sciences,Fujian Agriculture and Forestry University,Fuzhou 350002,China)(2.Key Laboratory of Smart Agriculture and Forestry,Fujian Agriculture and Forestry University,Fuzhou 350002,China)
Keywords:
cuckoo search algorithmglobal-local best fitnessscaling factorvaried factorfunction optimization
PACS:
O643; X703
DOI:
10.3969/j.issn.1672-1292.2022.02.009
Abstract:
Lévy Flights random walk and Biased/selective random walk is employed in cuckoo search algorithm to search for new solutions. Instead of a fixed scaling factor in standard Lévy Flights,in our study,global and local best fitness of individuals in each generation are utilized to dynamically define the scaling factor. And a modified cuckoo search algorithm,called GlbestCS is proposed. Comprehensive experiments demonstrate that this strategy is feasible,and it can effectively strengthen the convergence speed and improve accuracy of cuckoo search algorithm. In addition,the performance of the proposed algorithm is generally better than that of cuckoo search algorithm that uses a constant scaling factor,either based on uniformly distributed random numbers or based on a beta distribution random numbers.

References:

[1] 王永安,赵阳,蓝雨晨,等. 基于进化差分算法的环形电感建模及应用[J]. 南京师范大学学报(工程技术版),2020,20(3):32-37.
[2]王姝,张海龙,王恩荣. 基于改进粒子群算法的配电网网架优化研究[J]. 南京师范大学学报(工程技术版),2020,20(1):15-19.
[3]沈燕平,鞠勇,居茜. 考虑间歇性负荷的光储微网储能的优化配置技术研究[J]. 南京师范大学学报(工程技术版),2020,20(2):39-43,92.
[4]赵世田,付莹莹,曾勇,等. 基于非线性自适应度函数的遗传算法求取自由曲面最大主曲率研究[J]. 南京师范大学学报(工程技术版),2018,18(3):19-24.
[5]YANG X S,DEB S. Cuckoo search via Lévy flights[C]//Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing(NaBIC’09). Coimbatore,India:IEEE,2009.
[6]YANG X S,DEB S. Engineering optimisation by cuckoo search[J]. International Journal of Mathematical Modelling and Numerical Optimisation,2010,1(4):330-343.
[7]WANG G G,GANDOMI A H,ZHAO X,et al. Hybridizing harmony search algorithm with cuckoo search for global numerical optimization[J]. Soft Computing,2016,20(1):273-285.
[8]ROSLI S J,RAHIM H A,ABDUL R K N,et al. A hybrid modified method of the sine cosine algorithm using latin hypercube sampling with the cuckoo search algorithm for optimization problems[J]. Electronics,2020,9(11):1786.
[9]SHEHAB M,KHADER A T,LAOUCHEDI M. A hybrid method based on cuckoo search algorithm for global optimization problems[J]. Journal of Information and Communication Technology,2018,17(3):469-491.
[10]SHEHAB M,KHADER A T,LAOUCHEDI M,et al. Hybridizing cuckoo search algorithm with bat algorithm for global numerical optimization[J]. Journal of Supercomputing,2019,75(5):2395-2422.
[11]LI X T,WANG J N,YIN M H. Enhancing the performance of cuckoo search algorithm using orthogonal learning method[J]. Neural Computing and Applications,2014,24(6):1233-1247.
[12]WANG L J,ZHONG Y W.One-position inheritance based cuckoo search algorithm[J]. International Journal of Computing Science and Mathematics,2015,6(6):546-554.
[13]WANG L J,YIN Y L,ZHONG Y W. Cuckoo search with varied scaling factor[J]. Frontiers of Computer Science,2015,9(4):623-635.
[14]王李进,尹义龙,钟一文. 逐维改进的布谷鸟搜索算法[J]. 软件学报,2013,24(11):2687-2698.
[15]王李进,钟一文,尹义龙. 带外部存档的正交交叉布谷鸟搜索算法[J]. 计算机研究与发展,2015,52(11):2496-2507.
[16]SALGOTRA R,SINGH U,SAHA S,et al. Self adaptive cuckoo search:analysis and experimentation[J]. Swarm and Evolutionary Computation,2021,60:100751.
[17]WEI J M,YU Y G. A novel cuckoo search algorithm under adaptive parameter control for global numerical optimization[J]. Soft Computing,2019,24:4917-4940.
[18]WANG K,LIAN X F,PAN B. Improved cuckoo search algorithm based on exponential function[C]//Proceedings of the 2019 Chinese Intelligent Automation Conference. Zhenjiang,China:Springer,2019.
[19]CHEN L,LU H Q,LI H W,et al. Dimension-by-dimension enhanced cuckoo search algorithm for global optimization[J]. Soft Computing,2019,23(21):11297-11312.
[20]林要华,梁忠,胡华平. 贝塔分布的布谷鸟搜索算法[J]. 南京大学学报(自然科学版),2016,52(4):638-646.
[21]WALTON S,HASSAN O,MORGAN K,et al. Modified cuckoo search:a new gradient free optimisation algorithm[J]. Chaos,Solitons & Fractals,2011,44(9):710-718.
[22]VALIAN E,TAVAKOLI S,MOHANNA S,et al. Improved cuckoo search for reliability optimization problems[J]. Computers & Industrial Engineering,2013,64(1):459-468.
[23]LAYEB A.A novel quantum inspired cuckoo search for knapsack problems[J]. International Journal of Bio-inspired Computation,2011,3(5):297-305.
[24]ARUMUGAM M S,RAO M V C. On the performance of the particle swarm optimization algorithm with various inertia weight variants for computing optimal control of a class of hybrid systems[J]. Discrete Dynamics in Nature and Society,2006(3):79295.
[25]NOMAN N,IBA H. Accelerating differential evolution using an adaptive local search[J]. IEEE Transactions on Evolutionary Computation,2008,12(1):107-125.
[26]GARCíA S,MOLINA D,LOZANO M,et al. A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour:a case study on the CEC’2005 special session on real parameter optimization[J]. Journal of Heuristics,2009,15(6):617-644.
[27]GONG W Y,CAI Z H. Differential evolution with ranking-based mutation operators[J]. IEEE Transactions on Cybernetics,2013,43(6):2066-2081.
[28]WANG L J,ZHONG Y W. Cuckoo search algorithm with chaotic maps[J]. Mathematical Problems in Engineering,2015(1):715635.

Memo

Memo:
-
Last Update: 1900-01-01