[1]BIOUCAS-DIAS J M,PLAZA A,CAMPS-VALLS G,et al. Hyperspectral remote sensing data analysis and future challenges[J]. IEEE Geoence and Remote Sensing Magazine,2013,1(2):6-36.
[2]舒速,杨明,赵振凯. 基于分水岭的高光谱图像分类方法[J]. 南京师大学报(自然科学版),2015,38(1):91-97.
[3]朱志宾,丁世飞. 基于TWSVM的图像分类[J]. 南京师大学报(自然科学版),2014,37(3):8-14.
[4]王岽,吴见. 农作物各类高光谱遥感识别研究[J]. 地理与地理信息科学,2015,31(2):29-33.
[5]ZHU X X,TUIA D,MOU L,et al. Deep learning in remote sensing:a comprehensive review and list of resources[J]. IEEE Geoence and Remote Sensing Magazine,2018,5(4):8-36.
[6]陈跃. 改进可拓理论的带钢表面缺陷图像分类方法[J]. 南京师范大学学报(工程技术版),2016,16(3):54-62.
[7]LEE H,KWON H. Going deeper with contextual CNN for hyperspectral image classification[J]. IEEE Transactions on Image Processing,2016,26(10):4843-4855.
[8]ZHONG Z L,LI J,MA L F,et al. Deep residual networks for hyperspectral image classification[C]//2017 IEEE International Geoscience and Remote Sensing Symposium. Fort Worth,TX,USA,2017.
[9]MOU L,GHAMISI P,ZHU X X. Deep recurrent neural networks for hyperspectral image classification[J]. IEEE Transactions on Geoence and Remote Sensing,2017,55(7):3639-3655.
[10]SUNDERMEYER M,OPARIN I,GAUVAIN J L,et al. Comparison of feedforward and recurrent neural network language models[C]//2013 IEEE International Conference on Acoustics,Speech,and Signal Processing. Vancouver,BC,Canada,2013.
[11]FELIX A G,DOUGLAS E,JÜRGEN S. Applying LSTM to time series predictable through time-window approaches[C]//Proceedings of the 12th Italian Workshop on Neural Nets. Salerno,Italy:Springer,2002:193-200.
[12]BENGIO Y,SIMARD P,FRASCONI P. Learning long-term dependencies with gradient descent is difficult[J]. IEEE Transactions on Neural Networks,1994,5(2):157-166.
[13]WILLIAMS R J,ZIPSER D. A learning algorithm for continually running fully recurrent neural networks[J]. Neural Computation,2014,1(2):270-280.
[14]LI L,ZHANG H,SHEN Q. Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network[J]. Remote Sensing,2017,9(1):67.
[15]ZHONG Z L,LI J,LUO Z M. Spectral-spatial residual network for hyperspectral image classification:a 3-D deep learning framework[J]. IEEE Transactions on Geoscience and Remote Sensing,2017,56(2):847-858.
[16]李冠东,张春菊,高飞,等. 双卷积池化结构的3D-CNN高光谱遥感影像分类方法[J]. 中国图象图形学报,2019,24(4):639-654.
[17]魏健,赵红涛,刘敦楠,等. 基于注意力机制的CNN-LSTM短期电力负荷预测方法[J]. 华北电力大学学报(自然科学版),2021,48(1):42-47.
[18]LIU Q S,ZHOU F,HANG R L,et al. Bidirectional-convolutional LSTM based spectral-spatial feature learning for hyperspectral image classification[J]. Remote Sensing,2017,9(12):1330.
[19]王文广,赵文杰. 基于GRU神经网络的燃煤电站NOx排放预测模型[J]. 华北电力大学学报(自然科学版),2020,47(1):96-103.
[20]XU Y H,DU B,ZHANG L P,et al. A band grouping based LSTM algorithm for hyperspectral image classification[C]//CCF Chinese Conference on Computer Vision. Singapore:Springer,2017:421-432.
[21]SCHUSTER M,PALIWAL K K. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing,1997,45(11):2673-2681.
[22]LUO H W. Shorten spatial-spectral RNN with parallel-GRU for hyperspectral image classification[J]. arXiv Preprint arXiv:1810.12563,2018.