[1]MACGILLIVRAY T J,TRUCCO E,CAMERON J R,et al. Retinal imaging as a source of biomarkers for diagnosis,characterization and prognosis of chronic illness or long-term conditions[J]. The British Journal of Radiology,2014,87(1040):20130832.
[2]ZHANG L,FAN H,ZHANG J,et al. Multi-modal and multi-vendor retina image registration[J]. Biomedical Optics Express,2018,9(2):410-422.
[3]WANG Y Q,ZHANG J K,AN C H,et al. A segmentation based robust deep learning framework for multimodal retinal image registration[C]//Proceedings of the 2020 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP). Barcelona,Spain:IEEE,2020.
[4]MA J Y,JIANG X Y,FAN A X,et al. Image matching from handcrafted to deep features:a survey[J]. International Journal of Computer Vision,2021,129(1):23-79.
[5]汪前进,朱斌,李存华. 基于特征点的图像拼接方法的研究与应用[J]. 南京师范大学学报(工程技术版),2016,16(3):48-53.
[6]李鹏程,曾毓敏,张梦. 基于改进Harris的图像拼接算法[J]. 南京师范大学学报(工程技术版),2014,14(1):70-75.
[7]CHEN J,TIAN J,LEE N,et al. A partial intensity invariant feature descriptor for multimodal retinal image registration[J]. IEEE Transactions on Biomedical Engineering,2010,57(7):1707-1718.
[8]HARRIS C,STEPHENS M. A combined corner and edge detector[C]//TAYLOR C J. Proceedings of the Alvey Vision Conference. Manchester,UK:Alvey Vision Club,1988.
[9]BAY H,TUYTELAARS T,GOOL L V. Surf:speeded up robust features[C]//Proceedings of the 9th European Conference on Computer Vision. Graz,Austria:Springer,2006.
[10]WANG G,WANG Z C,CHEN Y F,et al. Robust point matching method for multimodal retinal image registration[J]. Biomedical Signal Processing and Control,2015,19:68-76.
[11]ZHANG H T,LIU X H,WANG G,et al. An automated point set registration framework for multimodal retinal image[C]//Proceedings of the 24th International Conference on Pattern Recognition(ICPR). Beijing,China:IEEE,2018.
[12]WANG Y Q,ZHANG J K,CAVICHINI M,et al. Robust content-adaptive global registration for multimodal retinal images using weakly supervised deep-learning framework[J]. IEEE Transactions on Image Processing,2021,30:3167-3178.
[13]SHE Y Y,ZHOU M,LI Q L,et al. Retinal image registration based on features of vessel-segmented image[C]//Proceedings of the 14th International Congress on Image and Signal Processing,BioMedical Engineering and Informatics(CISP-BMEI). Shanghai,China:IEEE,2021.
[14]AN C H,WANG Y Q,ZHANG J K,et al. Self-supervised rigid registration for multimodal retinal images[J]. IEEE Transactions on Image Processing,2022,31:5733-5747.
[15]SARLIN P E,DETONE D,MALISIEWICZ T,et al. Superglue:Learning feature matching with graph neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle,USA:IEEE,2020.
[16]SCHIFFERS F,YU Z K,ARGUIN S,et al. Synthetic fundus fluorescein angiography using deep neural networks[C]//Proceedings of the Bildverarbeitung für die Medizin 2018. Erlangen,Germany:Springer,2018.
[17]LI K,YU L Q,WANG S J,et al. Unsupervised retina image synthesis via disentangled representation learning[C]//Proceedings of the 4th International Workshop on Simulation and Synthesis in Medical Imaging. Shenzhen,China:Springer,2019.
[18]ISOLA P,ZHU J Y,ZHOU T,et al. Image-to-image translation with conditional adversarial networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Honolulu,USA:IEEE,2017.
[19]WANG T C,LIU M Y,ZHU J Y,et al. High-resolution image synthesis and semantic manipulation with conditional gans[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City,USA:IEEE,2018.
[20]LOWE D G. Object recognition from local scale-invariant features[C]//Proceedings of the Seventh IEEE International Conference on Computer Vision. Kerkyra,Greece:IEEE,1999.
[21]BAY H,TUYTELAARS T,GOOL L V. Surf:speeded up robust features[C]//Proceedings of the 9th European Conference on Computer Vision. Graz,Austria:Springer,2006.
[22]CHOY C B,GWAK J Y,SAVARESE S,et al. Universal correspondence network[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona,Spain:NIPS,2016.
[23]YI K M,TRULLS E,LEPETIT V,et al. Lift:Learned invariant feature transform[J]. arXiv Preprint arXiv:1603.09114,2016.
[24]吴玲玉,蓝洋,夏海英. 基于卷积神经网络的眼底图像配准研究[J]. 广西师范大学学报(自然科学版),2021,39(5):122-133.
[25]ZHANG J K,WANG Y Q,DAI J,et al. Two-step registration on multi-modal retinal images via deep neural networks[J]. IEEE Transactions on Image Processing,2021,31:823-838.
[26]FISCHLER M A,BOLLES R C. Random sample consensus:a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM,1981,24(6):381-395.
[27]DETONE D,MALISIEWICZ T,RABINOVICH A. Superpoint:self-supervised interest point detection and description[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Salt Lake City,USA:IEEE,2018.
[28]RONNEBERGER O,FISCHER P,BROX T. U-net:convolutional networks for biomedical image segmentation[J]. arXiv Preprint arXiv:1505.04597,2015.
[29]SIMONYAN K,ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv Preprint arXiv:1409.1556,2014.
[30]ALIPOUR S H M,RABBANI H,AKHLAGHI M R. Diabetic retinopathy grading by digital curvelet transform[J]. Computational and Mathematical Methods in Medicine,2012(4):761901.
[31]DAN T T,HU Y,HAN C,et al. Fusion of multi-source retinal fundus images via automatic registration for clinical diagnosis[J]. Neurocomputing,2021,459:370-382.