[1]RADWAN A M. Different possible ways for saving energy in the cement production[J]. Advances in Applied Science Research,2012,3(2):1162-1174.
[2]CHATTERJEE A,SUI T B. Alternative fuels- effects on clinker process and properties[J]. Cement and Concrete Research,2019,123:105777.
[3]ZHENG J Q,ZHAO L,DU W L. Hybrid model of a cement rotary kiln using an improved attention-based recurrent neural network[J]. ISA Transactions,2022,129:631-643.
[4]LV S Z,YU H L,WANG X H,et al. Multi-control strategy combinatorial control of burning temperature of cement rotary kiln[C]//2018 IEEE 4th Information Technology and Mechatronics Engineering Conference,2018:86-90.
[5]张荣,刘小燕,武伟宁,等. 回转窑筒体热损失测量系统的研究[J]. 电子测量与仪器学报,2017,31(11):1843-1848.
[6]GENG F,LI Y M,WANG X Y,et al. Simulation of dynamic processes on flexible filamentous particles in the transverse section of a rotary dryerand its comparison with ideo-imaging experiments[J]. Powder Technology,2011,207:175-182.
[7]袁芷晨,杨永斌,李骞,等. 球团回转窑建模与仿真的研究进展[J]. 钢铁研究学报,2022,34(11):1187-1196.
[8]李庆峰. 新型干法水泥回转窑烧成带温度建模与控制研究[D]. 合肥:合肥工业大学,2020.
[9]殷润. 基于数据驱动的水泥生产能耗系统建模与优化[D]. 南京:南京邮电大学,2021.
[10]林满山,梁欣. 回转窑煅烧配置参数的预测模型设计[J]. 科技创新与应用,2017,6(14):49-50.
[11]张成华,雷玉成,刘伟. 应用遗传算法优化铝合金穿孔型等离子弧立焊工艺参数[J]. 扬州大学学报(自然科学版),2004(3):32-35.
[12]曹丽茹,王晓强,王排岗,等. 基于NSGAⅡ算法的超声滚挤压工艺参数优化[J]. 塑性工程学报,2022,29(7):19-25.
[13]郭飞,汪汝健,张云,等. 塑料注射成型工艺参数优化的模糊规则网络模型[J]. 机械工程学报2022,58(20):206-220.
[14]李瑞. 多种群优化算法研究及在水泥回转窑中的应用[D]. 秦皇岛:燕山大学,2019.
[15]HASSAN A,SEYED S H,JAFAR H. Improvement of a cement rotary kiln performance using artificial neural network[J]. Journal of Ambient Intelligence and Humanized Computing,2021,12:7765-7776.
[16]JANNER M,FU J,ZHANG M,et al. When to trust your model:model-based policy optimiz-ation[C]//33rd Conference on Neural Information Processing Systems. Canada,Vancouver,2019.
[17]YU T H,THOMAS G,YU L,et al. MOPO:Model-based offline policy optimization[C]//34th Conference on Neural Information Processing Systems. Canada,Vancouver,2020.
[18]周剑平. 水泥生产工艺[M]. 西安:西北大学出版社,2008.
[19]CHUA K,CALANDRA R,MCALLISTER R,et al. Deep reinforcement learning in a handful of trials using probabilistic dynamics models[C]//32nd Conference on Neural Information Processing Systems. Canada,Monteal,2018.
[20]LAKSHMINARAYANAN B,PRITZEL A,BLUNDELL C. Simple and scalable predictive uncertainty estimation using deep ensembles[C]//31st Conference on Neural Information Processing Systems. Long Beach,CA,USA,2017.
[21]HAARNOJA T,ZHOU A,Abbeel P,et al. Soft actor-critic:off-policy maximum entropy deep reinforcement learning with a stochastic actor[C]//International Conference on Machine Learning. Sweden,Stockholm,2018:1861-1870.
[22]HAARNOJA T,ZHOU A,HARTIKAINEN R,et al. Soft actor-critic algorithms and applications[J]. arXiv Preprint arXiv:1812.05905,2019.
[23]KUMAR A,ZHOU A,TUCKER G,et al. Conservative Q-learning for offline reinforcement learning[C]//34th Conference on Neural Information Processing Systems. Canada,Vancouver,2020.
[24]DABNEY W,OSTRONSKI G,SILVER D,et al. Implicit quantile networks for distributional reinforcement learning[C]//International Conference on Machine Learning. Sweden,Stockholm,2018.
[25]YU Y,SI X,HU C,et al. A review of recurrent neural networks:LSTM cells and network architectures[J]. Neural Computation,2019,31(7):1235-1270.
[26]SALINAS D,FLUNKERT V,GASTHAUS J,et al. DeepAR:Probabilistic forecasting with autoregressive recurrentnetworks[J]. International Journal of Forecasting,2020,36(3):1181-1191.
[27]CHEN T,HE T,BENESTY M,et al. Xgboost:extreme gradient boosting[J]. R Package Version 0.4-2,2015,1(4):1-4.
[28]CHERKASSKY V,MA Y. Practical selection of SVM parameters and noise estimation for SVM regression[J]. Neural Networks,2004,17(1):113-126.
[29]CHALUPKA K,WILLIAMS C K I,MURRAY I. A framework for evaluating approximation methods for Gaussian process regression[J]. Journal of Machine Learning Research,2013,14:333-350.
[30]SCHULMAN J,WOLSKI F,DHARIWAL P,et al. Proximal policy optimization algorithms[J]. arXiv Preprint arXiv:1707.06347,2017.
[31]SYED U,BOWLING M,SCHAPIRE R E. Apprenticeship learning using linea programming[C]//Proceedings of the 25th International Conference on Machine Learning. Finland,Helsinki,2008.