|Table of Contents|

High Speed Molten Pool Image Detection Based on Weighted Fusion and Parameter Extraction(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2023年02期
Page:
16-24
Research Field:
计算机科学与技术
Publishing date:

Info

Title:
High Speed Molten Pool Image Detection Based on Weighted Fusion and Parameter Extraction
Author(s):
Ling Xu12Xie Fei123Yang Jiquan12Du Jun4Miao Liguo35Suo Hongbo3
(1.School of Electrical and Automation Engineering,Nanjing Normal University,Nanjing 210023,China)
(2.Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing,Nanjing Normal University,Nanjing 210023,China)
(3.Nanjing Zhongke Raycham Laser Technology Co.,Ltd.,Nanjing 210023,China)
(4.The State Key Laboratory for Manufacturing Systems Engineering,Xi'an Jiaotong University,Xi'an 710049,China)
(5.School of Machanical Engineering,Shenyang University of Technology,Shenyang 110870,China)
Keywords:
molten pool detectionadditive manufacturingsemantic segmentationfeature fusionneural network
PACS:
TG441.7
DOI:
10.3969/j.issn.1672-1292.2023.02.003
Abstract:
In order to obtain the input parameters for feedback control of additive manufacturing using molten pool feature parameters,we propose a laser additive manufacturing molten pool semantic segmentation algorithm based on channel-weighted FPN,and a molten pool orientation,area and width feature parameter extraction algorithm based on image pixel threshold. The semantic segmentation algorithm mainly consists of a lightweight backbone neural network and a channel-weighted feature FPN network. The experimental results show that the segmentation speed of the molten pool image can reach 79.76 frames/s,and the mIoU and mAP can reach 90.53% and 95.79%,respectively,and the model size is only 90MB. Compared with other similar types of deep learning models,this algorithm improves the detection speed and reduces the model parameter size and size while ensuring accuracy. The molten pool image feature parameter extraction algorithm combines the pixel threshold distribution of the original image captured by the camera and the segmented image,and can accurately analyze and calculate the orientation,width and area feature parameters of the molten pool.

References:

[1]吴陈铭,戴澄恺,王昌凌,等. 多自由度3D打印技术研究进展综述[J]. 计算机学报,2019,42(9):1918-1938.
[2]叶福兴,王永辉,娄智. 激光增材制造过程中激光与粉末的相互作用研究现状[J]. 中国表面工程,2021,34(2):1-12.
[3]WU D,CHEN H B,HUANG Y M,et al. Monitoring of weld joint penetration during variable polarity plasma arc welding based on the keyhole characteristics and PSO-ANFIS[J]. Journal of Materials Processing Technology,2017,239:113-124.
[4]CHEN Y H,CHEN B,YAO Y Z,et al. A spectroscopic method based on support vector machine and artificial neural network for fiber laser welding defects detection and classification[J]. NDT & E International,2019,108:102176.
[5]VANDONE A,BARALDO S,VALENTE A,et al. Vision-based melt pool monitoring system setup for additive manufacturing[J]. Procedia CIRP,2019,81:747-752.
[6]ZHANG Z F,WEN G R,CHEN S B. Audible sound-based intelligent evaluation for aluminum alloy in robotic pulsed GTAW:Mechanism,feature selection,and defect detection[J]. IEEE Transactions on Industrial Informatics,2017,14(7):2973-2983.
[7]李子晗,忻建文,肖笑,等. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报,2021,57(5):693-702.
[8]MAZZOLENI L,DEMIR A G,CAPRIO L,et al. Real-time observation of melt pool in selective laser melting:Spatial,temporal,and wavelength resolution criteria[J]. IEEE Transactions on Instrumentation and Measurement,2020,69(4):1179-1190.
[9]刘晓刚,闫红方,张荣. 基于形态学多尺度多结构的熔池图像边缘检测[J]. 热加工工艺,2019,48(5):216-219.
[10]杨启,田虎成,闫昭华,等. 激光近净成形中熔池宽度实时监控系统的研究[J]. 激光与红外,2019,49(9):1060-1067.
[11]LI X B,LI T,SHI B W,et al. The influence of substrate tilt angle on the morphology of laser cladding layer[J]. Surface and Coatings Technology,2020,391:125706.
[12]顾振杰,雷剑波,张传鹏,等. 镍硅硼合金粉末激光熔覆中熔池光谱检测分析[J]. 中国激光,2014,41(11):95-102.
[13]雷凯云,秦训鹏,刘华明,等. 基于神经网络的宽带激光熔覆熔池特征参数预测[J]. 光电子·激光,2018,29(11):1212-1220.
[14]YANG Z,LU Y,YEUNG H,et al. Investigation of deep learning for real-time melt pool classification in additive manufacturing[C]//Proceedings of the 2019 IEEE 15th International Conference on Automation Science and Engineering(CASE). Vancouver,Canada:IEEE,2019.
[15]LU J,HE H Y,SHI Y M,et al. Quantitative prediction for weld reinforcement in arc welding additive manufacturing based on molten pool image and deep residual network[J]. Additive Manufacturing,2021,41:101980.
[16]王仁杰,史圣泰. 基于机器视觉的增材制造激光熔覆熔池边缘检测和行为参数分析[J]. 中国金属通报,2021(13):209-210.
[17]CAI W,JIANG P,SHU L S,et al. Real-time identification of molten pool and keyhole using a deep learning-based semantic segmentation approach in penetration status monitoring[J]. Journal of Manufacturing Processes,2022,76:695-707.
[18]JIAO W H,WANG Q Y,CHENG Y C,et al. End-to-end prediction of weld penetration:A deep learning and transfer learning based method[J]. Journal of Manufacturing Processes,2021,63(2):191-197.
[19]ZHANG Z H,LI B,ZHANG W F,et al. Real-time penetration state monitoring using convolutional neural network for laser welding of tailor rolled blanks[J]. Journal of Manufacturing Systems,2020,54:348-360.
[20]ZHANG Y X,YOU D Y,GAO X D. Welding defects detection based on deep learning with multiple optical sensors during disk laser welding of thick plates[J]. Journal of Manufacturing Systems,2019,51:87-94.
[21]XU Y L,FANG G,LV N. Computer vision technology for seam tracking in robotic GTAW and GMAW[J]. Robotics and Computer-Integrated Manufacturing,2015,32:25-36.
[22]LIN T Y,DOLLAR P,GIRSHICK R,et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Honolulu,USA:IEEE,2017.
[23]HOWARD A,SANDLER M,CHEN B,et al. Searching for MobileNetV3[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision(ICCV). Seoul,Korea:IEEE,2020.
[24]ZHANG M X,WANG Z J,SUN T Z,et al. Salient object detection by pyramid networks with gating[C]//Proceedings of the 2019 IEEE International Conference on Robotics and Biomimetics(ROBIO). Dali,China:IEEE,2019.
[25]HE K M,ZHANG X Y,REN S Q,et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas,USA:IEEE,2016.
[26]SIMONYAN K,ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J/OL]. arXiv Preprint arXiv:1409.1556,2014.
[27]BOCHKOVSKIY A,WANG C Y,LIAO H Y M. Yolov4:Optimal speed and accuracy of object detection[J/OL]. arXiv Preprint arXiv:2004.10934,2020.
[28]CHEN L C,ZHU Y K,PAPANDREOU G,et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the 15th European Conference on Computer Vision(ECCV). Munich,Germany:Springer,2018.
[29]ZHAO H S,SHI J P,QI X J,et al. Pyramid Scene Parsing Network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Honolulu,USA:IEEE,2017.
[30]RONNEBERGER O,FISCHER P,BROX T. U-Net:Convolutional Networks for Biomedical Image Segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention(MICCAI). Munich,Germany:MICCAI,2015.
[31]张亚红,覃科. 一种形态学与Canny算子融合的焊接熔池边缘检测算法[J]. 桂林航天工业学院学报,2017,22(1):9-13.

Memo

Memo:
-
Last Update: 2023-06-15