|Table of Contents|

Nowcasting Tourist Flow Volume of Tourist Attraction Based on the EMD-VAR Model:A Case Study of Nanjing Confucius Temple(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2023年02期
Page:
77-86
Research Field:
管理科学与工程
Publishing date:

Info

Title:
Nowcasting Tourist Flow Volume of Tourist Attraction Based on the EMD-VAR Model:A Case Study of Nanjing Confucius Temple
Author(s):
Ding Jie12Ding Chunmei3Zhang Jianxin3
(1.School of Tourism,Nanjing Institute of Tourism and Hospitality,Nanjing 211100,China)
(2.School of Geography,Nanjing Normal University,Nanjing 210023,China)
(3.School of Geography and Ocean Science,Nanjing University,Nanjing 210023,China)
Keywords:
Baidu indexfluctuation correlationnowcastingempirical mode decompositionEMD-VAR model
PACS:
F592.7
DOI:
10.3969/j.issn.1672-1292.2023.02.011
Abstract:
Big data from network search provides a new perspective for the study of tourist flow volume prediction,but the traditional econometric models used in most studies are difficult to deal with the large number of nonlinear fluctuation characteristics in the timing series of network search and tourist flow,which leads to the unsatisfactory prediction accuracy. In this paper,empirical mode decomposition(EMD)is introduced to improve the vector autoregression(VAR)model to EMD-VAR model. EMD method is used to decompose the daily network search data and tourist flow volume of The Yangtze River Delta of Nanjing Confucius Temple Scenic Area,and a series of components with different frequency scales are obtained. Then,based on the perspective of fluctuation correlation,components of both network search data and tourist flow volume in the same scale are combined to establish a VAR model for prediction. The results show that:(1)The fluctuation cycle of network search is longer than that of tourist flow volume.(2)The compactness of correlation between network search and tourists flow volume is the greatest during the statutory holiday period.(3)The prediction accuracy of the EMD-VAR model is better than that of ARMA model and VAR model,respectively.

References:

[1]程绍文,张捷,梁玥琳,等. 我国旅游网站空间分布及动力机制研究[J]. 旅游学刊,2009,24(2):75-80.
[2]LIU P X,ZHANG H L,ZHANG J,et al. Spatial-temporal response patterns of tourist flow under impulse pre-trip information search:from online to arrival[J]. Tourism Management,2019,73:105-114.
[3]李方一,肖夕林,刘思佳. 基于网络搜索数据的区域经济预警研究[J]. 华东经济管理,2016,30(8):60-66.
[4]闫闪闪,梁留科,索志辉,等. 基于大数据的洛阳市旅游流时空分布特征[J]. 经济地理,2017,37(8):216-224.
[5]刘培学,朱知沛,张捷,等. 旅游在线搜索与客流波动的动态关联研究——以南京钟山风景名胜区为例[J]. 旅游学刊,2021,36(11):95-105.
[6]ARTOLA C,PINTO F,GARCIA P D P. Can internet searches forecast tourism inflows?[J]. International Journal of Manpower,2015,36(1):103-116.
[7]PAN B,WU D C,SONG H. Forecasting hotel room demand using search engine data[J]. Journal of Hospitality and Tourism Technology,2012,3(3):196-210.
[8]YANG X,PAN B,EVANS J A,et al. Forecasting Chinese tourist volume with search engine data[J]. Tourism Management,2015,46:386-397.
[9]黄先开,张丽峰,丁于思. 百度指数与旅游景区游客量的关系及预测研究——以北京故宫为例[J]. 旅游学刊,2013,28(11):93-100.
[10]沈苏彦,赵锦,徐坚. 基于“谷歌趋势”数据的入境外国游客量预测[J]. 资源科学,2015,37(11):2111-2119.
[11]张斌儒,黄先开,刘树林. 基于网络搜索数据的旅游收入预测——以海南省为例[J]. 经济问题探索,2015(8):154-160.
[12]任乐,崔东佳. 基于网络搜索数据的国内旅游客流量预测研究——以北京市国内旅游客流量为例[J]. 经济问题探索,2014(4):67-73.
[13]HUANG B,HAO H. A novel two-step procedure for tourism demand forecasting[J]. Current Issues in Tourism and Practice,2021,24(9):1199-1210.
[14]PARK S,LEE J,SONG W. Short-term forecasting of Japanese tourist inflow to South Korea using Google trends data[J]. Journal of Travel & Tourism Marketing,2017,34(3):357-368.
[15]刘少湃,田纪鹏,陆林. 上海迪士尼在建景区客源市场空间结构预测——旅游引力模型的修正及应用[J]. 地理学报,2016,71(2):304-321.
[16]GUNTER U,ÖNDER I. Forecasting city arrivals with Google Analytics[J]. Annals of Tourism Research,2016,61:199-212.
[17]LIU Y Y,TSENG F M,TSENG Y H. Big Data analytics for forecasting tourism destination arrivals with the applied Vector Autoregression model[J]. Technological Forecasting and Social Change,2018,130:123-134.
[18]孙烨,张宏磊,刘培学,等. 基于旅游者网络关注度的旅游景区日游客量预测研究——以不同客户端百度指数为例[J]. 人文地理,2017,32(3):152-160.
[19]殷杰,郑向敏,董斌彬. 基于VECM模型的景区网络关注度与旅游人数的关系研究——以鼓浪屿为例[J]. 福建农林大学学报(哲学社会科学版),2015,18(5):68-75.
[20]陈涛,刘庆龙. 智慧旅游背景下的大数据应用研究:以旅游需求预测为例[J]. 电子政务,2015(9):6-13.
[21]李晓炫,吕本富,曾鹏志,等. 基于网络搜索和CLSI-EMD-BP的旅游客流量预测研究[J]. 系统工程理论与实践,2017,37(1):106-118.
[22]谢天保,赵萌. 基于网络搜索数据的游客量预测模型研究[J]. 计算机系统应用,2018,27(7):199-204.
[23]陆利军,廖小平. 基于EMD-BP神经网络的游客量预测研究[J]. 统计与决策,2019,35(4):85-89.
[24]余向洋,沙润,朱兴,等. 基于EMD的景区客流波动特征及其组合预测——以黄山风景区为例[J]. 地理科学进展,2012,31(10):1353-1359.
[25]赵雪花,陈旭. 经验模态分解与均生函数——最优子集耦合模型在年径流预测中的应用[J]. 资源科学,2015,37(6):1173-1180.
[26]高亚男,周彬,虞虎,等. 长江经济带入境旅游时空分异及趋势预测[J]. 资源开发与市场,2020,36(10):1153-1158.
[27]姜鉴铎,张建新,吴国平,等. 基于加权方法的旅游流网络结构特征分析——以南京市为例[J]. 资源开发与市场,2019,35(5):706-711.
[28]马莉,刘培学,张建新,等. 景区旅游流与网络关注度的区域时空分异研究[J]. 地理与地理信息科学,2018,34(2):87-93.
[29]戴文,丁蕾,刘培学,等. 城市旅游流客源地分布及预测研究——以南京市为例[J]. 资源开发与市场,2018,34(5):676-681.
[30]张衍广,原艳梅. 基于经验模态分解的中国生态足迹与生态承载力动力学预测[J]. 资源科学,2008(8):1212-1217.
[31]CANTIS D S,FERRANTE M,VACCINA F. Seasonal pattern and amplitude—a logical framework to analyze seasonality in tourism:an application to bed occupancy in Sicilian hotels[J]. Tourism Economics,2011,17(3):655-675.

Memo

Memo:
-
Last Update: 2023-06-15