|Table of Contents|

Research on the Optimal Trading Strategy Based on Neural Network Prediction Model(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2023年04期
Page:
19-28
Research Field:
计算机科学与技术
Publishing date:

Info

Title:
Research on the Optimal Trading Strategy Based on Neural Network Prediction Model
Author(s):
Dong Han1Chen Jiali2Wang Haoran3Ye Xiaohui3
(1.School of Information Science & Technology,Xiamen University Tan Kah Kee College,Zhangzhou 363105,China)
(2.School of Economics and Management,Fuzhou Institute of Technology,Fuzhou 350506,China)
(3.School of Computing and Information Science,Fuzhou Institute of Technology,Fuzhou 350506,China)
Keywords:
futures tradingLSTM modelsingle class tradingportfolio trading
PACS:
F832.5; TP183
DOI:
10.3969/j.issn.1672-1292.2023.04.003
Abstract:
Based on the long short-term memory neural network(LSTM)model,the rise and fall in the future price of investment products in financial transactions are predicted,and the best strategies for long and short trading methods are analyzed considering the transaction cost. Through experiments,it is concluded that the trading model can make a greater profit when the prediction accuracy is close to 50% or greater than 50%,and the maximum profit can be obtained when the test set is 25%,and the order of return of the four varieties is Bitcoin,crude oil,US dollar index,and gold. Changing the relative commission has a certain impact on the bias of portfolio transactions,and the return changes in a gradient style. The model is simplified on a daily basis and cannot be used for single-day high-frequency trading analysis.

References:

[1]CHEN K,ZHOU Y,DAI F Y. A LSTM-based method for stock returns prediction:a case study of China stock market[C]//Proceedings of the 2015 IEEE International Conference on Big Data. Santa Clara,USA:IEEE,2015:2823-2824.
[2]徐浩然,许波,徐可文. 机器学习在股票预测中的应用综述[J]. 计算机工程与应用,2020,56(12):19-24.
[3]武大硕,张传雷,陈佳,等. 基于遗传算法改进LSTM神经网络股指预测分析[J]. 计算机应用研究,2020(增刊1):86-87.
[4]吴玉霞,温欣. 基于ARIMA模型的短期股票价格预测[J]. 统计与决策,2016(23):83-86.
[5]方燕,耿雪洋,秦珊珊. 沪深两市传媒板块指数价格预测研究——基于ARIMA—GARCH模型的分析[J]. 价格理论与实践,2018(1):102-105.
[6]林杰,龚正. 期货程序化交易策略模型比较研究——以棕榈油期货交易为例[J]. 中南财经政法大学学报,2018(4):128-134.
[7]方蕤. 一种基于SETAR模型的期货交易策略设计[D]. 昆明:云南财经大学,2020.
[8]杨艳林. 黄金的资产属性:对冲资产还是避险资产[J]. 武汉金融,2012(5):42-45.
[9]贾丽平. 比特币的理论、实践与影响[J]. 国际金融研究,2013(12):14-25.
[10]龚旭,林伯强. 跳跃风险、结构突变与原油期货价格波动预测[J]. 中国管理科学,2018,26(11):11-21.
[11]王晋斌,厉妍彤. 美元指数:国际货币体系利益格局的政治经济学[J]. 国际金融,2021(12):46-58.
[12]GERS F A,SCHMIDHUBER J,CUMMINS F. Learning to forget:continual prediction with LSTM[J]. Neural Computation,2000,12(10):2451-2471.
[13]HUANG Z H,XU W,YU K. Bidirectional LSTM-CRF models for sequence tagging[J/OL]. arXiv Preprint arXiv:1508.01991,2015.
[14]GRAVES A,JAITLY N,MOHAMED A R. Hybrid speech recognition with deep bidirectional LSTM[C]//2013 IEEE Workshop on Automatic Speech Recognition and Understanding(ASRU 2013). Olomouc,Czech:IEEE,2013.
[15]HOCHREITER S,SCHMIDHUBER J. Long-term memory[J]. Neural Computation,1997,9(8):1735-1780.
[16]潘明,钱宇,李秀喜. 一种改进的顺序型多目的间歇工厂生产调度的MILP模型[J]. 化工学报,2006,57(4):861-866.
[17]张连营,张鸿飞,王争朋. 反向物流网络设计的改进MILP模型[J]. 工业工程,2006,9(1):90-94.

Memo

Memo:
-
Last Update: 2023-12-15