|Table of Contents|

Study on the Influence of Nitrogen on Water Blooms in Taihu Lake by Using Multiple Methods Based on Remote Sensing Images(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2024年01期
Page:
72-
Research Field:
环境科学与工程
Publishing date:

Info

Title:
Study on the Influence of Nitrogen on Water Blooms in Taihu Lake by Using Multiple Methods Based on Remote Sensing Images
Author(s):
Wu Zijun1Sun Yahui2
(1.School of Geography,Nanjing Normal University,Nanjing 210023,China)
(2.School of Energy and Mechanical Engineering,Nanjing Normal University,Nanjing 210023,China)
Keywords:
NitrogenCyanobacteria bloomTaihu Lakephycocyaninremote sensing imagemachine learning modelwater environment management
PACS:
X524
DOI:
10.3969/j.issn.1672-1292.2024.01.010
Abstract:
Nitrogen has a strong correlation with the outbreak of water blooms in Taihu Lake,and it is an important triggering factor. Based on multi-source data,the mechanism by which nitrogen impacts cyanobacteria blooms in Taihu Lake is discussed. The results prove that nitrogen promotes the bloom outbreak through nutrient release and recycling,forming a positive feedback with the growth of cyanobacteria. At high water temperature,the competition between cyanobacteria growth and denitrification process for nitrate nitrogen weakens the denitrifying effect of denitrifying microorganisms,resulting in the continuous bloom of Taihu Lake. Correlation analysis demonstrates significant correlations between different nitrogen forms and chlorophyll a concentrations. In addition,ammonium nitrogen and total phosphorus are the main factors to explain the change of algae growth,and their driving effects are increasing. Machine learning model results futher support that nitrogen and phosphorus have become surplus states. Therefore,reducing exogenous nitrogen input and enhancing denitrification can effectively inhibit the proliferation of cyanobacteria,which is of great significance for controlling eutrophication in Taihu Lake. The correlation mechanism between nitrogen and water bloom outbreak in Taihu Lake is analyzed from multiple levels and perspectives in this paper,aiming to provide scientific basis for water ecological restoration and water environment management decisions.

References:

[1]生态环境部. 水华遥感与地面监测评价技术规范(试行):HJ 1098-2020[S]. 北京:中国环境出版集团,2020.
[2]孔繁翔,马荣华,高俊峰,等. 太湖蓝藻水华的预防、预测和预警的理论与实践[J]. 湖泊科学,2009,21(3):314-328.
[3]商兆堂,任健,秦铭荣,等. 气候变化与太湖蓝藻暴发的关系[J]. 生态学杂志,2010,29(1):55-61.
[4]SHI K,ZHANG Y L,ZHANG Y B,et al. Phenology of phytoplankton blooms in a trophic lake observed from long-term MODIS data[J]. Environmental Science & Technology:ES&T,2019,53(5):2324-2331.
[5]李昌杰,许海,詹旭,等. 反硝化脱氮对太湖蓝藻水华态势的影响[J]. 环境科学,2023,44(9):4977-4984.
[6]BROOKS B W,LAZORCHAK J M,HOWARD M D A,et al. Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems?[J]. Environmental Toxicology and Chemistry,2016,35(1):6-13.
[7]PAERL H W,OTTEN T G. Harmful cyanobacterial blooms:Causes,consequences,and controls[J]. Microbial Ecology:An International Journal,2013,65(4):995-1010.
[8]XU H,PAERL H W,QIN B Q,et al. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu,China[J]. Limnology and Oceanography,2010,55(1):420-432.
[9]张虎军,宋挺,朱冰川,等. 太湖蓝藻水华暴发程度年度预测[J]. 中国环境监测,2022,38(1):157-164.
[10]水利部太湖流域管理局. 太湖健康状况报告[N/OL].[2019-12-05]. https://www.tba.gov.cn/slbthlyglj/thjkzkbg/content/slth1_09f7d6b21629439f9891c7fd70ad49d8.html.
[11]江苏省生态环境厅. 太湖流域国控重点污染源自动监控月报(第1期)[EB/OL].[2023-03-04]. https://sthjt.jiangsu.gov.cn/art/2022/3/4/art_83585_10365210.html.
[12]DUAN H T,MA R H,HU C M. Evaluation of remote sensing algorithms of cyanobacteria pigments retrievals during spring bloom formation in several lakes of East China[J]. Remote Sensing of Environment:An Interdisciplinary Journal,2012,126:126-135.
[13]DUAN H T,MA R H,ZHANG Y Z,et al. A new three-band algorithm for estimating chlorophyll-concentrations in turbid inland lakes[J]. Environmental Research Letters,2010,5(4):044009.
[14]QI L,HU C M,DUAN H T,et al. A novel MERIS algorithm to derive cyanobacterial phycocyanin pigment concentrations in a eutrophic lake:Theoretical basis and practical considerations[J]. Remote Sensing of Environment:An Interdisciplinary Journal,2014,154:298-317.
[15]ZHANG Y C,MA R H,ZHANG M,et al. Fourteen-year record(2000-2013)of the spatial and temporal dynamics of floating algae blooms in Lake Chaohu,observed from time series of MODIS images[J]. Remote Sensing,2015,7(8):10523-10542.
[16]LUNDBERG S M,LEE S I. A unified approach to interpreting model predictions[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach,USA:NIPS,2017.
[17]王子恒,李鹏,陈静. 基于特征选择和模糊类支持度的模糊分类关联规则挖掘算法[J]. 软件,2023,44(8):15-22.
[18]LUNDBERG S M,ERION G,CHEN H,et al. From local explanations to global understanding with explainable AI for trees[J]. Nature Machine Intelligence,2020,2(1):56-67.
[19]LANDECKER W,THOMURE M D,BETTENCOURT L M A,et al. Interpreting individual classifications of hierarchical networks[C]//2013 IEEE Symposium on Computational Intelligence and Data Mining(CIDM). Singapore:IEEE,2013.
[20]王一旭. 流域水环境分区分类管控体系研究——以太湖流域浙江片区为例[D]. 杭州:浙江大学,2021.
[21]WILHELM S W,FARNSLEY S E,LECLEIR G R,et al. The relationships between nutrients,cyanobacterial toxins and the microbial community in Taihu(Lake Tai),China[J]. Harmful Algae,2011,10(2):207-215.
[22]杨柳燕,杨欣妍,任丽曼,等. 太湖蓝藻水华暴发机制与控制对策[J]. 湖泊科学,2019,31(1):18-27.
[23]SCHEFFER M,HOSPER S H,MEIJER M L,et al. Alternative equilibria in shallow lakes[J]. Trends in Ecology & Evolution,1993,8(8):275-279.
[24]BONILLA S,AGUILERA A,AUBRIOT L,et al. Nutrients and not temperature are the key drivers for cyanobacterial biomass in the Americas[J]. Harmful Algae,2023,121:102367.
[25]张民,阳振,史小丽. 太湖蓝藻水华的扩张与驱动因素[J]. 湖泊科学,2019,31(2):336-344.
[26]CAO H Y,HAN L,LI L Z. A deep learning method for cyanobacterial harmful algae blooms prediction in Taihu Lake,China[J]. Harmful Algae,2022,113:102189.
[27]XIAO X,PENG Y Z,ZHANG W,et al. Current status and prospects of algal bloom early warning technologies:A review[J]. Journal of Environmental Management,2024,349:119510.
[28]YIN H B,YIN P,YANG Z. Seasonal sediment phosphorus release across sediment-water interface and its potential role in supporting algal blooms in a large shallow eutrophic Lake(Lake Taihu,China)[J]. Science of The Total Environment,2023,896:165252.
[29]吴晓东,孔繁翔,张晓峰,等. 太湖与巢湖水华蓝藻越冬和春季复苏的比较研究[J]. 环境科学,2008,29(5):1313-1318.
[30]BAULCH H M,STANLEY E H,BERNHARDT E S. Can algal uptake stop NO-3 pollution?[J]. Nature,2011,472:86-89.
[31]朱梦圆,朱广伟,王永平. 太湖蓝藻水华衰亡对沉积物氮、磷释放的影响[J]. 环境科学,2011,32(2):409-415.
[32]林伟,李玉中,李昱佳,等. 氮循环过程的微生物驱动机制研究进展[J]. 植物营养与肥料学报,2020,26(6):1146-1155.
[33]韩菲尔,赵中华,李大鹏,等. 利用稳定同位素(15N)示踪技术研究浮游藻类氮素吸收速率特征[J]. 海洋与湖沼,2019,50(4):811-821.
[34]李安定. 海河干流水华暴发特征及对DOM和重金属生物有效性的影响[D]. 北京:北京科技大学,2021.
[35]SINGH Y P,ARORA S,MISHRA V K,et al. Plant and soil responses to the combined application of organic amendments and inorganic fertilizers in degraded sodic soils of indo-gangetic plains[J]. Communications in Soil Science and Plant Analysis,2019,50(19/20/21/22):2640-2654.

Memo

Memo:
-
Last Update: 2024-03-15