|Table of Contents|

Spatial Characters of n-alkane δ13C and δD and Their Paleoenvironmental Significance(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2011年04期
Page:
83-88
Research Field:
Publishing date:

Info

Title:
Spatial Characters of n-alkane δ13C and δD and Their Paleoenvironmental Significance
Author(s):
Wang YanhuaYang Hao
School of Geography Science,Nanjing Normal University,Nanjing 210046,China
Keywords:
LUCCsedimentn-alkanesδ13CδD
PACS:
P618.13
DOI:
-
Abstract:
It is of paleoenvironmental significance for the investigation of n-alkane δ13 C and δD in environmental samples. The spatial characters of n-alkane δ13C and δD were used to determine the resource of organic matter in sediments. This paper summarizes the study of n-alkane δ13C and δD and reveals their distribution characters in different sediments. To better understand the effects of land use and land cover change ( LUCC) ,the application of n-alkane δ13 C and δD was introduced in research on soil erosion.

References:

[1]Huang Y,Street-Perrott F A,Metcalfe S E,et al. Climate change as the dominant control on glacial-interglacial variation in C3 and C4 plant abundance[J]. Science,2001,293( 5535) : 1 647-1 651.
[2]Hughen K A,Eglinton T I,Xu L,et al. Abrupt tropical vegetation response to rapid climate changes[J]. Science,2004,304 ( 5679) : 1 955-1 959.
[3]Zhang Z H,Zhao M X,Lu H Y,et al. Lower temperature as the main cause of C4 plant declines during the glacial periods on the Chinese Loess Plateau[J]. Earth and Planetary Science Letters,2003,214 ( 3 /4) : 467-481.
[4]Ratnayake N P,Suzuki N,Okada M,et al. The variations of stable carbon isotope ratio of land plant-derived n-alkanes in deep-sea sediments from the Bering Sea and the North Pacific Ocean during the last 250 000 years[J]. Chemical Geology, 2006,228( 4) : 197-208.
[5]张杰,贾国东. 植物正构烷烃及其单体氢同位素在古环境研究中的应用[J]. 地球科学进展,2009,24( 8) : 874-881. Zhang Jie,Jia Guodong. Application of plant-derived n-Alkanes and their compound-specific hydrogen isotopic composition in paleoenvironment research[J]. Advances in Earth Science,2009,24( 8) : 874-881. ( in Chinese)
[6]郑艳红,程鹏,周卫建. 正构烷烃及单体碳同位素的古植被与古气候意义[J]. 海洋地质与第四纪地质,2005,25( 1) : 99-104. Zheng Yanhong,Cheng Peng,Zhou Weijian. Paleo-vegetation and paleo-climate n-alkanes and compound-specific carbon isotopic compositions[J]. Marine Geology and Quaternary Geology,2005,25( 1) : 99-104. ( in Chinese)
[7]Xie S,Nott C J,Avsejs L A,et al. Palaeoclimate records in compound-specific δD values of a lipid biomarker in ombrotrophic peat[J]. Organic Geochemistry,2000,31( 10) : 1 053-1 057.
[8]Sachse D,Radke J,Gleixner G. Delta D values of individual n-alkanes from terrestrial plants along a climatic gradient-implications for the sedimentary biomarker record[J]. Organic Geochemistry,2006,37( 4) : 469-483.
[9]Schefuβ E,Ratmeyer V,Stuut J W,et al. Carbon isotope analyses of n-alkanes in dust from the lower atmosphere over the central eastern Atlantic[J]. Geochimica et Cosmochimica Acta,2003,67( 10) : 1 757-1 767.
[10]Chikaraishi Y,Naraoka H. Compound-specific δD-δ13 C analyses of n-alkanes extracted from terrestrial and aquatic plants [J]. Phytochemistry,2003,63( 3) : 361-371.
[11]Schwark L,Zink K,Lechterbeck L. Reconstruction of postglacial early Holocene vegetation history in terrestrial Central Europe via cuticular lipid biomarker and pollen records from lake sediments[J]. Geology,2002,30( 5) : 463-466.
[12]钟艳霞,陈发虎,安成邦,等. 陕西黄土高原秦安地区全新世植被的讨论[J]. 科学通报,2007,52( 3) : 318-323. Zhong Yanxia,Chen Fahu,An Chengbang,et al. Research of vegetation in holocene loess plateau of Qin’an Shanxi province [J]. Chinese Science Bulletin,2007,52( 3) : 318-323. ( in Chinese)
[13]Huang Y S,Clemens S C,Liu W G,et al. Large-scale hydrological change drove the late Miocene C4 plant expansion in the Himalayan foreland and Arabian Penninsula[J]. Geology,2007,35( 6) : 531-534.
[14]Burgoyne T W,Hayes J M. Quantitative production of H2 by pyrolysis of gas chromatographic effluents[J]. Analytical Chemistry, 1998,70( 24) : 5 136-5 141.
[15]Hilkert A W,Douthitt C B,Schluter H J,et al. Isotope ratio monitoring gas chromatography /mass spectrometry of D/H by high temperature conversion isotope ratio mass spectrometry[J]. Rapid Communication in Mass Spectrometry,1999,13 ( 13) : 1 226-1 230.
[16]Seki O,Nakatsuka T,Shibata H,et al. A compound-specific n-alkane δ13C and δD approach for assessing source and delivery processes of terrestrial organic matter within a forested watershed in northern Japan[J]. Geochimica et Cosmochimica Acta, 2010,74( 2) : 599-613.
[17]Huang Y,Shuman B,Wang Y,et al. Hydrogen isotope ratios of individual lipids in lake sediments as novel tracers of climatic and environmental change: a surface sediment test[J]. Journal of Paleolimnology,2004,31( 3) : 363-375.
[18]夏忠欢,徐柏青,Mügler I,等. 青藏高原湖泊表层沉积物中陆源正构烷烃氢同位素比值的气候意义[J]. 湖泊科学, 2008,20( 6) : 695-704. Xia Zhonghuan,Xu Baiqing,Mügler I,et al. Climatic implication of hydrogen isotope ratios of terrigenous n-alkanes in lacustrine surface sediment of the tibetan plateau[J]. Journal of Lake Sciences,2008,20( 6) : 695-704. ( in Chinese)
[19]Nabbefeld B,Grice K,Twitchett R J,et al. An integrated biomarker,isotopic and palaeoenvironmental study through the lake Permian event at Lusitaniadalen,Spitsbergen[J]. Earth and Planetary Science Letters,2010,291: 84-96.
[20]Xie S,Yao T,Kang S,et al. Geochemical analyses of a Himalayan snowpit profile: implications for atmospheric pollution and climate[J]. Organic Geochemistry,2000,31( 1) : 15-23.
[21]Nott C J,Xie S,Avsejs L A,et al. n-Alkane distributions in ombrotrophic mires as indicators of vegetation change related to climatic variation[J]. Organic Geochemistry,2000,31( 2 /3) : 231-235.
[22]Pancost R D,Bass M,Van Geel B,et al. Biomarkers as proxies for plant inputs to peats: an example from a sub-boreal ombrotrophic bog[J]. Organic Geochemistry,2002,33( 7) : 675-690.
[23]Hanisch A,Ariztegui D,Pūttmann W. The biomarker record of Lake Albano,central Italy-implications for Holocene aquatic system response to environmental change[J]. Organic Geochemistry,2003,34( 9) : 1 223-1 235.
[24]Xie S,Nott C J,Avsejs L A,et al. Molecular and isotopic stratigraphy in an ombrotrophic mire for palaeoclimate reconstruction [J]. Geochimica et Cosmochimica Acta,2004,68( 13) : 2 849-2 862.
[25]Zhang Z,Zhao M,Yang X,et al. A hydrocarbon biomarker record for the last 40 kyr of plant input to Lake Heqing,southwestern China[J]. Organic Geochemistry,2004,35( 5) : 595-613.
[26]Liu W G,Huang Y S. Compound specific D/H ratios and molecular distributions of higher plant leaf waxes as novel paleoenvironmental indicators in the Chinese Loess Plateau[J]. Organic Geochemistry,2005,36( 6) : 851-860.
[27]Yamamoto M,Polyak L. Changes in terrestrial organic matter input to the Mendeleev Ridge,western Arctic Ocean,during the Late Quaternary[J]. Global and Planetary Change,2009,68: 30-37.
[28]Castaneda I S,Werne J P,Johnson T C,et al. Organic geochemical records from Lake Malawi ( East Africa) of the last 700 years,part II: Biomarker evidence for recent changes in primary productivity[J]. Palaeogeography,Palaeoclimatology, Palaeoecology,2011,303( 1 /4) : 140-154.
[29]饶志国,朱照宇,陈发虎,等. 黄土有机质稳定碳同位素研究进展[J]. 地球科学进展,2006,21( 1) : 62-69. Rao Zhiguo,Zhu Zhaoyu,Chen Fahu,et al. Reviews on the stable carbon isotopic researches of organic matter of Chinese loess [J]. Advances in Earch Science,2006,21( 1) : 62-69. ( in Chinese)
[30]White J W C,Ciais P,Figge R A,et al. A high-resolution record of atmospheric CO2 content from carbon isotopes in pet [J]. Nature,1994,367: 153-156.
[31]饶志国,贾国东,朱照宇,等. 中国东部表土总有机质碳同位素和长链正构烷烃碳同位素对比研究及其意义[J]. 科学通报,2008,53( 17) : 2 077-2 084. Rao Zhiguo,Jia Guodong,Zhu Zhaoyu,et al. The spatial change character of δ13C of total of organic matter and δ13C of longchain n-alkanes of the surface soils across east China and their paleoenvironmental significance[J]. Chinese Science Bulletin, 2008,53( 17) : 2 077-2 084. ( in Chinese)
[32]Bi X H,Sheng G Y,Liu X H,et al. Molecular and carbon and hydrogen isotopic composition of n-alkanes in plant leaf waxes [J]. Organic Geochemistry,2005,36( 10) : 1 405-1 417.
[33]Street-Perrott F A,Huang Y S,Perrot R A,et al. Impact of lower atmospheric carbon dioxide on tropical mountain ecosystems [J]. Science,1997,278( 5342) : 1 422-1 426.
[34]Epstein S,Yapp C J,Hall J H. The determination of the D/H ratio of non-exchangeable hydrogen in cellulose extracted from aquatic and land plants[J]. Earth and Planetary Sciences Letters,1976,30( 2) : 241-251.
[35]Schiegl W E. Deuterium content of peat as a paleoclimatic recorder[J]. Science,1972,175( 4021) : 512-513.
[36]Schiegl W E. Climatic significance of deuterium abundance in growth rings of Picea[J]. Nature,1974,251: 582-584.
[37]Smith F A,Freeman K H. Influence of physiology and climate on δD of leaf wax n-alkanes from C3 and C4 grasses[J]. Geochimica et Cosmochimica Acta,2006,70( 5) : 1 172-1 187.
[38]Blyth A J,Asrat A,Baker A,et al. A new approach to detecting vegetation and land-use change using high-resolution lipid biomarker records in stalagmites[J]. Quaternary Research,2007,68( 3) : 314-324.
[39]Pendall E,Markgraf V,White J W C,et al. Multiproxy record of late Pleistocene—Holocene climate and vegetation changes from a peat bog in Patagonia[J]. Quaternary Research,2001,55( 2) : 168-178.
[40]Schoell M,Simoneit B R T,Wang T G. Organic geochemistry and coal petrology of tertiary brown coal in the Zhoujing mine, Baise Basin,South China: 4. Biomarker sourcesinferred from stable carbon isotope compositions of individual compounds [J]. Organic Geochemistry,1994,21( 6 /7) : 713-719.

Memo

Memo:
-
Last Update: 2013-03-21