|Table of Contents|

Synthesis and Visible Light Photocatalytic Performance ofBi4MoO9/g-C3N4Nanocomposite(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2021年03期
Page:
69-76
Research Field:
环境科学与工程
Publishing date:

Info

Title:
Synthesis and Visible Light Photocatalytic Performance ofBi4MoO9/g-C3N4Nanocomposite
Author(s):
Sun Leilei12Gu Xinyue13Zheng Xiaoni13Lai Jiahao13Yang Jing13Cui Shihai13
(1.School of Chemistry and Materials Science,Nanjing Normal University,Nanjing 210023,China)(2.Jiangsu Wuxi Zhongtian Solid Waste Disposal Co.,Ltd.,Wuxi 214000,China)(3.Jiangsu Collaborative Innovation Center of Biomedical Functional Materials,Jiangsu Key Laboratory ofBiomedical Materials,Nanjing 210023,China)
Keywords:
Bi4MoO9g-C3N4SMTheterojunctionphotocatalytic property
PACS:
O643.36
DOI:
10.3969/j.issn.1672-1292.2021.03.010
Abstract:
g-C3N4 nanosheets are synthesized by polymerization method and loaded with Bi4MoO9 nanoparticles(NPs)on its surface to prepare Bi4MoO9/g-C3N4(BMC)heterostructure catalyst. BMC samples are characterized by TEM,SEM,DRS and PL. The photocatalytic performance of BMC is investigated with sulfadiazine(SMT)as the target degradation material. The results show that the photocatalytic activity of BMC-50(50.0% Bi4MoO9)is the highest. When the concentration of BMC-50 is 0.5 g·L-1,SMT could degrade 94.0% within 180 min,which is 17.7 times of the degradation capacity of Bi4MoO9. The fabrication of the heterostructure between Bi4MoO9 and g-C3N4 reduces the recombination of electron-hole pairs and enhances the photocatalytic performance.

References:

[1] BRASCHI I,BLASIOLI S,GIGLI L,et al. Removal of sulfonamide antibiotics from water:evidence of adsorption into an organophilic zeolite Y by its structural modifications[J]. Journal of Hazardous Materials,2010,178(1-3):218-225.
[2]GENG X X,LV S Y,YANG J,et al. Carboxyl-functionalized biochar derived from walnut shells with enhanced aqueous adsorption of sulfonamide antibiotics[J]. Journal of Environmental Management,2021,280:111749.
[3]LI Y,LAI J H,ZHENG X N,et al. Fabrication of wool ball-like F-doped BiOCl0.4Br0.3I0.3 composite for effective sulfamethazine photocatalytic degradation[J]. Materials Research Bulletin,2020,130:110937.
[4]汪子帆,聂占均,韩天傲,等. Ag/g-C3N4复合光催化剂的制备及降解染料废水的研究[J]. 齐鲁工业大学学报(自然科学版),2019,33(6):1-7.
[5]时晓羽,李会鹏,赵华,等. 石墨相氮化碳基Z-Scheme体系光催化分解水研究进展[J]. 石油化工,2019,48(9):982-987.
[6]覃燕菲,邓咏诗,古皓,等. 铁配合物光催化还原二氧化碳研究进展[J]. 东莞理工学院学报,2019,26(3):53-57.
[7]余致汐,贺南南,陈欢,等. 甲壳素复合石墨相氮化碳的制备及光催化杀菌性能[J]. 环境化学,2020,39(5):1271-1278.
[8]WANG W,FANG J J,SHAO S F,et al. Compact and uniform TiO2@g-C3N4 core-shell quantum heterojunction for photocatalytic degradation of tetracycline antibiotics[J]. Applied Catalysis B:Environmental,2017,217(1):57-64.
[9]WU K,CHEN D D,FANG J Z,et al. One-step synthesis of sulfur and tungstate co-doped porous g-C3N4 microrods with remarkably enhanced visible-light photocatalytic performances[J]. Applied Surface Science,2018,462:991-1001.
[10]LI Y F,ZHOU X B,XING Y. In situ thermal-assisted loading of monodispersed Pt nanoclusters on CdS nanoflowers for efficient photocatalytic hydrogen evolution[J]. Applied Surface Science,2020,506:144933.
[11]ZHANG J L,LIU H,MA Z. Flower-like Ag2O/Bi2MoO6 p-n heterojunction with enhanced photocatalytic activity under visible light irradiation[J]. Journal of Molecular Catalysis A:Chemical,2016,424:37-44.
[12]XU F F,CHENG G,SONG S,et al. Insights into promoted adsorption capability of layered BiOCl nanostructures decorated with TiO2 nanoparticles[J]. ACS Sustainable Chemistry & Engineering,2016,4:7013-7022.
[13]GAO B R,WANG J,DOU M M,et al. Enhanced photocatalytic removal of amoxicillin with Ag/TiO2/mesoporous g-C3N4 under visible light:property and mechanistic studies[J]. Environmental Science and Pollution Research,2020,27:7025-7039.
[14]赖树锋,肖开棒,梁锦芝,等. 石墨氮化碳光催化剂的制备及其改性研究进展[J]. 人工晶体学报,2020,49(4):744-750.
[15]LI S J,HU S W,ZHANG J L,et al. Facile synthesis of Fe2O3 nanoparticles anchored on Bi2MoO6 microflowers with improved visible light photocatalytic activity[J]. Journal of Colloid and Interface Science,2017,497:93-101.
[16]DING J,YANG Z Q,HE C,et al. UiO-66(Zr)coupled with Bi2MoO6 as photocatalyst for visible-light promoted dye degradation[J]. Journal of Colloid and Interface Science,2017,497:126-133.
[17]FANG G L,LIU J,YAN X H,et al. Highly efficient visible light photocatalytic activities in self-assembled metastable TiO2/Bi4MoO9 heterojunctions[J]. Advanced Materials Interfaces,2018,5(20):1800844.
[18]XIA P F,ZHU B C,CHENG B,et al. 2D/2D g-C3N4/MnO2 nanocomposite as a direct Z-Scheme photocatalyst for enhanced photocatalytic activity[J]. ACS Sustainable Chemistry & Engineering,2018,6:965-973.
[19]PIRHASHEMI M,HABIBI-YANGJEH A. Simple and large scale one-pot method for preparation of AgBr-ZnO nanocomposites as highly efficient visible light photocatalyst[J]. Applied Surface Science,2013,283:1080-1088.
[20]CHEN Y J,TIAN G H,SHI Y H,et al. Hierarchical MoS2/Bi2MoO6 composites with synergistic effect for enhanced visible photocatalytic activity[J]. Applied Catalysis B:Environmental,2015,164:40-47.
[21]XIE M Y,ZHANG T L. One-pot,facile fabrication of a Ag3PO4-based ternary Z-scheme photocatalyst with excellent visible-light photoactivity and anti-photocorrosion performance[J]. Applied Surface Science,2018,436:90-101.
[22]TIAN Y,LI W,ZHAO C H,et al. Fabrication of hollow mesoporous SiO2-BiOCl@PANI@Pd photocatalysts to improve the photocatalytic performance under visible light[J]. Applied Catalysis B:Environmental,2017,213:136-146.
[23]WANG F L,WANG Y F,LI Y Y,et al. The facile synthesis of a single atom-dispersed silver-modified ultrathin g-C3N4 hybrid for the enhanced visible-light photocatalytic degradation of sulfamethazine with peroxymonosulfate[J]. Dalton Transactions,2018,47(20):6924-6933.

Memo

Memo:
-
Last Update: 2021-09-30