VO2 在 V-P-Fe系 CTR 的相变偏移分析

孙健¹, 甘朝钦², 刘英³, 吴宗汉²

(1南京师范大学 电气与自动化工程学院, 江苏 南京 210042
2.东南大学 物理系, 江苏 南京 210096
3. 江苏兴顺电子元件厂, 江苏 扬州 225700)

[摘要] 实验表明,在氧化钒中掺杂不同的物质与不同的比例制作的邻界热敏电阻 CTR (Critical Temperature Resister)样品的 VO_2 相变点得到了提高,发生了偏移,这种偏移与掺杂成份与比例有一定的关系.根据样品对应的热谱图,从样品成份中 VO_{∞} Fe_2O_3 、 P_2O_5 微观结构分析各成份所起的作用.设计制作 3种掺杂比例不同的样品,比较其不同组份相变点的偏移.此方案得 出,在制作邻界热敏电阻 CTR时各组份相互牵制相互影响的关系. VO_2 的相对量与相变点温度成正比关系; P_2O_5 的相对量影响 VO_2 微晶的稳定,也会影响 Fe_2O_3 的变价和电子的传导,从而影响 VO_2 的相变; Fe_2O_3 的量与 VO_2 导体性能成正比关系,相 对量大,相变点温度将降低.

[关键词] CTR, P₂O₅, Fe₂O₃, VO₂, 相变 [中图分类号] TP 212 [文献标识码] A [文章编号]1672-1292(2009)02-0005-03

Analysis of VO₂ Phase Transitions of V–P–Fe in C. T. RS

Sun Jian¹, Gan Chaoqin², Liu Yin³, Wu Zonghan²

(1. School of Electrical and Automation Engineering Nanjing Normal University, Nanjing 210042, China,

2. Department of Physics, Southeast University, Nanjing 210096, China

3. Jiangsu X ingshun Electron ics Device Ltd, Y angzhou 225700, China)

Abstract The experiment shows that VO_2 phrase transition points of CTR (Critical Temperature Resister) samples produced by Vanadim oxide doped in different materials with different proportions have been raised, and excursion occurred, and this excursion is related to the doped elements and their proportions. According to the them all spectrum corresponded to by the sample, different roles played by the elements are analyzed from the micro-structures of VO_2 , Fe_2O_3 , P_2O_5 in sample elements. Components from sample analysis of the components of the role of Design ratio of Three samples with different groups are compared. It follows from this program that in the production of them is brCTR, each group has mutual influence on each other. The relative amount of VO_2 phase transition temperature is directly proportional to the relationshipt the relative volume of P_2O_5 has the in pact on VO_2 . Microcrystalline stability, and also on the price of Fe_2O_3 and electronic conduction, thus affecting the phase-change of VO_2 ; the volume of Fe_2O_3 is directly proportional to conductivity of VO_2 , i.e., the larger the relatively amount the base transition temperature K ey words CTR, P_2O_5 , Fe_2O_3 , VO_2 , phase change

二氧化钒 (VO₂)在 68℃左右发生半导体 – 金属的可逆相变, 从低温的单斜结构变化到高温的四方结构. 在发生相变的过程中, VO₂的电阻率、红外光透过率会出现突变, 利用这种特性, VO₂在光电开关、热敏电阻、节能窗玻璃等众多的领域具有良好的应用前景^[1-3]. 因而如何降低或改变 VO₂的相变临界点, 成为 VO₂应用研究的一个重点. 通过掺杂的方式来改变相变温度是常见的方法之一.

V-P-Fe系 CTR^[4]是由 3种氧化物:氧化钒 (V_2O_5 [→] VO_2)、五氧化二磷 (P_2O_5)和三氧化二铁 (Fe₂O₃)按 一定比例混合并经高温烧结后制成,是具有临界特性的负电阻温度系数的热敏电阻. 其相变温度因掺杂而 改变,且材料的比例不同也使得相变温度发生偏移.为此,我们制作了 3种不同的样品,对此进行热谱分 析,从微观角度分析其成分,找出不同掺杂比例对氧化钒相变温度的影响. 图 4是 3种 CTR的 DSC热分析

收稿日期: 2008-10-16

基金项目: 国家自然科学基金 (2005111GZ3B341)资助项目.

通讯联系人: 孙 健,副教授,研究方向:传感器元件的研究与开发. E-mail sun jian@njnu edu en

曲线,表1为3种样品成分配料组份比和对应的相变点.

CTR 成份分析 1

1.1 VO2与相变

在制备 CTR的烧结过程中, V₂O₅ 被部分还原为 VO₂ 形 成 VO2 微晶. 在不同温度下 VO2 其晶系是不同的, 在 340 K以 上时, VO2单晶是规则的四方晶系金红石结构, 当温度降至 340K 以下时, VO₂的晶格发生畸变,转变为单斜结构, V⁴⁺ 离 子的位置沿直干 C轴的方向发生偏移, 如图 1所示, 在晶格场 的作用下 V⁴⁺ 的外层电子在不同方向受到 O²⁻ 离子的静电力 不同而产生偏移,在沿 V – O 键的轴向上,电子受到 O²⁻离子 静电排斥力最大:在其它方向上所受的静电力就相应小一些. V⁴⁺产生偏移后由于静电力的改变将促使其 3d带产生分裂出 现新的禁带,从而导致 VO_2 由导体转变为半导体. 即 VO_2 在 特定温度 (340 K) 附近发生相变^[57].

1.2 FeO3与杂质缺陷

在制造 CTR 的过程中,经过烧结, FeO3 被还原成 Fe3O4, FeO4 是反尖晶石结构氧化物,其结构分子式可表示为: AB₂O₄[8Fe³⁺(8Fe²⁺8Fe³⁺)320²⁻], 其晶胞中包括 8个 Fe²⁺ 离子, 16个 Fe³⁺离子和 32个 0²⁻离子. 其结构如图 2所示.

 $F_{e}O_{3}$ 其作用除了在烧结时与 $P_{2}O_{5}$ 一起形成玻璃相,把 VO2微晶粘结起来,起稳定性作用外,主要是以杂质身份出现 的. 当 VO2 晶体中因溶入不同化学成分的 Fe3O4 时, 必然会有 些 "杂质离子" Fe^{3+} 或 Fe^{2+} 取代原有 V^{4+} 离子的晶格位置, 它 就成为低价替位杂质离子,这就改变了 VO2 晶体的微观结构 状态,从而影响晶体的各种物理化学性能、电性能和相变.

1.3 P₂O₅与晶粒体

固体 P2O5烧结前为六方晶系,属亚稳定型.经过烧结转 变为正方晶系,烧结前还是烧结后,都是绝缘体, P₂O₅在 CTR 中以自身形成的玻璃相,把 VO2 微晶、Fe3O4、P2O5 三者粘结 起来形成晶粒体^[\$ 9 10]. P₂O₅ 起着缓和 VO₂ 微晶的相变引起 的形变,改善了晶粒体的稳定性,在晶粒体中, VO_2 微晶由于 其相变的缘故,使晶粒体在高温态 $(T > T_e)$ 呈金属性,在低温 态 (T < T_e)则转变为半导体, 如图 3所示.

样品配料与热谱图 2

2.1 样品配料

CTR 产品制备所用原材料: 化学纯五氧化二钒 V₂O₅分 析纯五氧化二磷 P2O% 化学纯三氧化二铁 Fe2O% 分析纯无水乙醇、聚乙烯醇溶液和去离子水.

为了分析研究不同的配方组	份比对相变的影响,
拟订了 3种配方的组份比,进行试	制.其样品不同的配
料组份比如表 1所示.	
2.2 执谱图	

热谱图的测量是用 PERK N-EIMER 公司生产的

表 1 3种样品成分配料组份比

Table 1 Three kind of sample ingredient component ratio

	$V_2 O_5 / $	P ₂ O ₅ <i>M</i>	Fe ₂ O ₃ /%	<i>Т</i> _С /С
1	70	20	10	62 01
2	60	20	20	58 82
2	50	25	25	56 70

© 1994-2013 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

功率补偿型 Diamond DSC 差示扫描量热仪.

主要技术指标: 温度范围为 – 170~725℃; 升降温速率为 0.01~500℃ /m in可调; 控温精度为优于 0.1℃; 量热精度: 优 于 0.1%. 样品测量的热谱图如图 4所示.

3条曲线具有不同的相变温度, 1号样品 $T_{c1} = 56.79$ °C, 2 号样品 $T_{c2} = 58.82$ °C, 3号样品 $T_{c3} = 62.01$ °C. 可以看出不同的 配料比其对应的相变温度有所不同.

3 结 语

材料组份比的不同,将导致产品相变点的改变,特别对于 氧化物材料更是如此,它们中的多数不能形成稳定的尖晶石结

Fig.4 DSC thermal spectra of three samples

构,只能形成各种多晶氧化物的机械混合物,随组份比波动而发生改变,对热处理敏感.从 3种样品的热谱 图及其组成材料的微观分析得知,各组份之间相互牵制相互影响. VO₂ 的相对量与相变点温度成正比关 系. P₂O₅ 的相对量影响 VO₂ 微晶的稳定,也会影响 Fe₂O₃ 的变价和电子的传导,从而影响 VO₂ 的相变. Fe₂O₃ 的量与 VO₂导体性能成反比关系,相对量大,相变点温度将提高.

[参考文献] (References)

- [1] RataA D, ChezanA R. 化学控制氧化钒薄膜性能 [J]. 物理学评论 B, 2004, 7(69): 1-10
 RataA D, ChezanA R. Growth and properties of strained VOx thin films with controlled stoichiometry [J]. Physical Review B, 2004, 7(69): 1-10 (in Chinese)
- [2] 吴卫和,王德平,黄文. 掺杂与热处理温度对 VO₂薄膜性能的影响 [J]. 建筑材料学报, 2006, 32(5): 9-13.
 WuWeihe, Wang Deping HuangWen Property of VO₂ thin film affected by doping and treatment temperature [J]. Journal of Building Materials, 2006, 32(5): 9-13. (in Chinese)
- [3] 黄维刚,林华. 掺 M o纳米 VO₂ 粉体的相变特性研究 [J]. 稀有金属材料与工程, 2006, 35(10): 1554-1556
 H uang W eigang Lin H ua Study of phase transition characters of mo-doped nonosized VO₂ powders [J]. RareM etalM aterials and Engineering 2006, 35(10): 1554-1556 (in Chinese)

[4] 孙健, 甘朝钦. V-P-Fe系 CTR的研制 [J]. 应用科学学报, 2000 18(2): 186-188 Sun Jian, Gan Chaoqin Fabrication and characteristic study of V-P-Fe CTR [J]. Journal of Applied Science, 2000, 18(2): 186-188 (in Chinese)

- [5] 王惠, 甘朝钦. V-P-Fe系 CTR的导电模型 [J]. 南京师范大学学报: 工程技术版, 2005, 5(4): 1-3.
 Wang Hui Gan Chaoqin The electric conduction model of V-P-Fe CTR [J]. Journal of Nanjing Normal University Engineering and Technology Edition, 2005, 5(4): 1-3. (in Chinese)
- [6] 赵力丁,吴志明.氧化钒薄膜的掺锆实验研究[J].实验科学与技术,2006,16(4):113-116
 Zhao Liding Wu Zhin ing Experiment and research of VO_x thin films doped with zirconium [J]. Experimental Science and Technology, 2006, 16(4):113-116. (in Chinese)
- [7] 胡再勇,徐楚韶. VO₂ 薄膜相变及其温度滞后[J]. 过程工程学报, 2003, 2(10): 421-424. Hu Zaiyong, Xu Chushao Phase transition and transition temperature hysteresis of VO₂ thin film[J]. The Chinese Journal of Process Engineering 2003, 2(10): 421-424. (in Chinese)
- [8] 郭宁, 徐彩玲. VO₂ 粉末的制备及其相变性能研究 [J]. 钢铁钒钛, 2004, 25(9): 26-29 GuoN ing Xu Cailing Preparation of VO₂ powder and its phase transition characters [J]. Iron Steel Vanadium Titauium, 2004, 25(9): 26-29. (in Chinese)
- [9] 陈泳,张凯锋. 一种制备掺杂纳米 VO₂的新方法 [J]. 甘肃科学学报, 2006 18(6): 38-40.
 Chen Yong Zhang Kaileng A new method for the preparation of doped VO₂ nanopowders[J]. Journal of Gansu Sciences, 2006, 18(6): 38-40. (in Chinese)
- [10] 谢太斌,李金华. 二氧化钒多晶薄膜的掺杂改性 [J]. 红外技术, 2005, 27(9): 393-398.
 Xie Taibin, Li Jinhua Modification of polycrystalline vanadium dioxide film by doping methods [J]. Infrared Technology, 2005, 27(9): 393-398. (in Chinese)

[责任编辑:刘 健]