[ 1] Winslow W M. Induced fibration of suspensions[ J] . J of Applied Physics, 1949, 20: 1137~ 1140.
[ 2] Rabinow J. The magnetic fluid clutch[ J] . AIEE Transactions, 1948, 67: 1308~ 1315.
[ 3] Klinggenberg D J, Van Swol F, Zukoski C F. Dynamic simulation of electrorheological suspension[ J] . J of Chemical Physics,1989, 91: 7888.
[ 4] Lou Z, Ervin R D, Filisko F E. A preliminary parametric study of electrorheological dampers[ J] . Transactions ASME J of Fluid Eng ineering, 1994, 116: 570.
[ 5] Redfield R C. Performance of low- bandwidth, sem-i active damping concepts for suspension control [ J] . J of Vehicle Dynamic System,1991, 20: 245~ 267.
[ 6] Hwang S H, Heo S J, Kim H S, et al. Vehicle dynamic analysis and evaluation of continuously controlled sem-i active suspensions using hardware- in- the- loop simulation[ J] . J of Vehicle System Dynamics, 1997, 27: 423~ 434.
[ 7] Margida A J, Wesis K D, Carlson J D. Magneto-rheological materials based on iron particles [ J] . Int J of Modern Physics B,1999, 10: 3335~ 3341.
[ 8] Dyke S J, Spencer B F Jr, SainM K, et al . An experimental study of MR dampers for seismic protection[ J] . J of Smart Materials and Structures, 1998, 7: 693~ 703.
[ 9] Choi S B, Lee H S, Hong S R, et al. Control and response characteristics of a magneto- rheological fluid damper for passenger vehicles[A] . Proceedings of SPIE, Smart Structures and Materials[ C] . 2000: 438~ 443.
[ 10] Chrzan M J, Carlson J D. MR fluid sponge devices and their use in vibration control of washing machines[ A] . Proceeding of 8th Annular Symposiom on Smart Structures and Materials[ C] . Newport, 2001.
[ 11] Wereley N M, Pang L, Kamath G M. Idealized hysteresis modeling of electrorheological and magnetorheological dampers[ J] . J of Intelligent Material Systems and Structures, 1998, ( 9) : 642~ 649.
[ 12] Werely N M, Pang L. Nondimensional analysis of sem-i active electroheological and magnetorheological dampers using approximate parallel plate models[ J] . J of Smart Materials and Structures, 2000, ( 7) : 732~ 743.
[ 13] Wang E R, Ma X Q, Rakheja S, et al . A general model of a magneto- rheological controllable damper[ A] . Proceedings of 9 th Int.Congress on Sound and Vibration ( ICSV9) [ C] . USA: University of Central Florida, 2002. 412.
[ 14] Ma X Q, Wang E R, Rakheja S, et al. Modeling hysteretic characteristics of MR- fluid damper and model validation[ A] . Proceedings of 41st IEEE Conf on Decision and Control ( CDC02) [ C] . USA: Ohio State University, 2002. 1675~ 1680.
[ 15] Leva A, Piroddi L. NARX- based technique for the modelling of magneto- rheological damping devices[ J] . J of SmartMaterials and Structures, 2002, ( 11) : 79~ 88.
[ 16] Ge P, Jouaneh M. Tracking control of a piezoceramic actuator[ J] . IEEE Transactions on Control Systems Technology, 1996, 4( 3) : 209~ 215.
[ 17] Ahmad N J, Khorrami F. Adaptive control of systems with backlash hysteresis at the input[ A] . Proceedings of the American Control Conference[ C] . California: San Diego, 1999. 3018~ 3022.
[ 18] Su C Y, Stepanenko Y, Svoboda J, et al . Robust adaptive control of a class of nonlinear systems with unknown backlash- like hysteresis[J] . IEEE Transactions on Automatic Control, 2000, 45( 12) : 2427~ 2431.
[ 19] Corradini M L, Orlando G. Robust stabilization of nonlinear uncertain plants with backlash or dead zone in the actuator[ J] . IEEE Trans on Control Systems Technology, 2002, 10( 1) : 158~ 166.
[ 20] Khail H. Nonlinear system[M] . USA: Prentice Hall, 2002. 111~ 625.