[ 1] V lad im ir N. Vapnik. S tatistical Learn ing Theo ry [M ]. NewYork: Spr inger-Ver lag, 1998.
[ 2] 许建华, 张学工, 李衍达. 支持向量机的新发展[ J]. 控制与决策, 2004, 19: 481-484.
[ 3] Edga r Osuna, Robert Freund, Federico G iros.i An improved training algor ithm fo r support vector m ach ines [ A ]. Proceed ing s of IEEE [ C ] . NNSP, 1997. 276- 285.
[ 4 ] Thorsten Joach im s. M aking large-sca le SVM learning pratica l[ A]. Advances in Kerne lM ethods-Support Vecto r Lea rning, Cambr idg e [ C ] . M IT Press, 2000. 169- 184.
[ 5] Lu Baoliang, W angKa ian, U tiyam aM, et al. A part-versus- part m ethod for m ass ive ly pa ra lle l tra in ing o f support vecto r machines [ A ]. Proceedings o f IEEE / INNS Int. Joint Con.f on Neural Netw orks ( IJCNN2004 ) [ C ]. H ungary: Budapest, 2004. 735-740.
[ 6] Anton Schwa ighofe r, V loker Tresp. The bayesian comm i-t tee support vecto r m ach ine [ J] . Lecture No tes in Compute r Science, 2001, 2130: 411-417.
[ 7] N adeem Ahm ed Syed, H uan Liu, Kah Kay Sung. Increm enta l learn ing w ith suppo rt vector m ach ines[ A] . Proceedings o f theWo rkshop on Support V ectorM ach ines at the In ternational Jo int Confe rence on Artificia l In tell-i gence[ C]. Sw eden: S to ckho lm, 1999.
[ 8] B lake C L, M erz C J. UCI( ftp: / / ftp. ics. uc.i edu /pub / m ach ines- lea rning-database).