|Table of Contents|

Application of Data Fusion Based on Neural Network for Displacement Sensing System(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2006年01期
Page:
28-32
Research Field:
Publishing date:

Info

Title:
Application of Data Fusion Based on Neural Network for Displacement Sensing System
Author(s):
ZHU Haimei
College of Physical Science and Technology,Yangzhou University,Yangzhou 225002,China
Keywords:
data fusion BP neural network RBF neural netwo rk temperature dr ift
PACS:
TP212
DOI:
-
Abstract:
The tem perature dr ift e rror is one o f the m ajor e rrors of the displacem ent senso r system. In order to improve the accuracy and stability, the output from the displacem ent senso r and the one from the temperature sensor can be fused. At present, neu ra l netwo rk has been w ide ly app lied to the area o f da ta fus ion, in w hich da ta from mu ltiple sensors arem ostly fused by BP neura l netw ork. The low training speed o f BP ne tw ork leads to the poor practicab ility, there fo re in this paper, a data fusion m ethod based on RBF neura l netwo rk is proposed for reduc ing temperature drift erro r. The outputs from the disp lacem ent sensor and tho se from the tem pera ture sensor are sent to the fusion cente r, w he re the RBF neura l netw ork is tra ined and as a resu lt the stable outpu t is obta ined. Exper iments show that the ou-t put stab ility of the disp lacem ent sensor is im proved by 4 tim es under the sam e tem perature fluctuation. It is obv ious that the proposed me thod in this paper is effective for reduc ing the drift erro r o f displacem ent sensor system.

References:

[ 1] 孙涛, 张宏建. 目标识别中的信息融合技术[ J]. 自动化仪表, 2001, 22( 2): 1-3.
SUN Tao, ZHANG H ong jian. Inform ation fusion techno logy fo r ob jec t recogn ition[ J]. Autom atic Instrum ents, 2001, 22( 2): 1-3. ( in Ch inese)
[ 2] 刘君华. 采用压力传感器同时测量压力和温度[ J] . 微电子学与计算机, 1990( 2): 8-11.
LIU Junhua. M easuring pressure and temperature sim ultaneously by pressure senso r[ J]. M icro-E lectronics and Com puters, 1990( 2): 8-11. ( in Ch inese)
[ 3] 赵敏, 潘卫明, 杨灿军. 基于神经网络的数据融合技术在谐振式密度传感器中的运用[ J]. 传感技术学报, 2000( 3): 187-192.
ZHAO M in, PAN W eim ing, YANG C an jun. Application o f da ta fusion techno logy based on neura l ne tw ork for density sensor w ith harm on ic v ib ration[ J]. Journa l o f Sensor Techno logy, 2000( 3): 187-192. ( in Chinese)
[ 4] 张铁壁. 多传感器数据融合技术在智能压力检测中的应用[ J] . 河北工程技术高等专科学校学报, 2003( 2): 26-29.
ZHANG T ieb.i Applica tion o f da ta fusion techno logy about m ultip le sensors for pressure test w ith intelligence[ J]. Journal o f H ebe i Eng ineer ing and Techn ica l Co llege, 2003( 2): 26-29. ( in Ch inese)
[ 5] 蔡兵. 基于神经网络的半导体压力传感器数据融合技术[ J] . 襄樊学院学报, 2002, 23( 2): 16-18.
CAI B in. Da ta fusion techno logy based on neura l network for sem iconductor pressure sensor[ J]. Journal o fX iangfan Co lleg e, 2002, 23( 2): 16-18. ( in Chinese)
[ 6] STOKBRO, UMBERGER, HERTZ. Explo itting neurous w ith loca lized recep itive fields to learn chaos[ J]. Com plex System s, 1990( 4): 603-622.
[ 7] 刘君华. 智能传感器系统[M ]. 西安: 西安电子科技大学出版社, 1999: 388-400.
LIU Junhua. Sensor System w ith Intelligence[M ]. X i’ an: X idian University Press, 1999: 388-400. ( in Chinese)
[ 8] 寇雪芹, 师帅兵. BP人工神经网络在二传感器数据融合处理中的应用[ J]. 计量技术, 2003( 2): 26-28.
KOU Xueq in, SH I Shua ib ing. Applica tion o f BP a rtific ia l neura l netw ork for da ta fusion about two senso rs[ J]. M easurem ent Techn ique, 2003( 2): 26-28. ( in Chinese)

Memo

Memo:
-
Last Update: 2013-04-29