|Table of Contents|

A Designated-Verifier Proxy Signature Scheme Based on Elliptic Curve(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2008年01期
Page:
69-74
Research Field:
Publishing date:

Info

Title:
A Designated-Verifier Proxy Signature Scheme Based on Elliptic Curve
Author(s):
Shen LiminZhang Futai
School of Mathematics and Computer Science,Nanjing Normal University,Nanjing 210097,China
Keywords:
e lliptic curve d ig ita l s igna ture adaptively chosen-message attack designated-ve rifier proxy signature
PACS:
TN918
DOI:
-
Abstract:
Th is paper presents an im proved e lliptic curve dig ita l signature ( ECDSA) schem ewh ich comb ines the Schnorr signa ture schem e w ith ECDSA. This schem e is mo re efficient by avo iding the ca lcu lation o f inverse elem ent over the fie ld Zn. And the de tailed secur ity ana ly sis o f the schem e shows that it is secure. Then a designated- verifier proxy signature schem e based on the im proved ECDSA schem e is proposed. The com putationa l comp lex ity asw e ll as the secur ity o f the new ly pro

References:

[ 1] DiffieW, H e llm anM. New d irections in cryptog raphy[ J]. IEEE Transaction on Inform ation Theory, 1976, IT- 22( 6): 644- 654.
[ 2] M amboM, UsudaK, Okamo to E. Proxy signatures for de lega ting sign ing operation[ C ] / / Proceedings of the 3rd ACM Conference on Computer and Commun ications Security. New York: ACM Press, 1996: 48- 57.
[ 3] Gu ilinW ang. Designated- verifier proxy signatures fo rE-comm erce[ C ] / / 2004 IEEE ICME. Taipe :i [ s. n. ], 2004: 1 731 -1 734.
[ 4] JakobssonM, Sako K, Impagliazzo R. Designated ve rifer proofs and the ir applica tions[ C ] / / Adv in C rypto logy-Eurocrypt. 96, LNCS 1070. Be rlin: Spr inge r-Ver lag, 1996: 143- 154.
[ 5] Johson D, M enezes A. The e lliptic curve d ig ita l s igna ture algor ithm [ R]. Canada: Dept of Comb inator ics and Optim ization, Un-i ve rsity o fW ater loo, 1999.
[ 6] B lake I F, Seroussi G, Sm art N P. E lliptic Curves in Cryptogaphy[M ]. Cambr idge: C ambr idge Univ ers itry Press, 1999: 29- 55.
[ 7] M enezes A lfred J, Paul C V an Oorscho t, Sco tt A V anstone. H andbook o f App lied C ryptography [M ] . New York: CRC Press, 1997: 425- 488.
[ 8] Julio Lopez, R ica rdo Dahab. Im proved a lgo rithm s for e lliptic curve ar ithm etic in GF( 2n ) [ C] / / Se lected A reas in C ryptography. 98, SAC. 98. LNCS1556. Canada, On tario: [ s. n. ], 1999: 201- 212.
[ 9] 沈丽敏, 陈恭亮, 游永兴. 特征为3的域上的椭圆曲线点的快速计算[ J]. 数学杂志, 2004, 24( 5): 557 -560.
Shen L im in, Chen Gong liang, You Yongx ing. Fast elliptic curve ar ithm etic over fie lds of characteristic th ree [ J]. Journa l o f M a them a tics, 2004, 24( 5): 557- 560. ( in Ch inese)
[ 10] Po intcheva l Stern. Secur ity argum ents for d ig ita l signatures and blind signatures[ J]. Journa l o f Crypto logy, 2000, 13( 3): 361- 396.
[ 11] 张宁, 傅晓彤, 肖国镇. 对基于椭圆曲线的代理签名的研究与改进[ J]. 西安电子科技大学学报: 自然科学版, 2005, 32( 2): 280 -283.
Zhang N ing, Fu X iaotong, X iao Guozhen. Study and improvem ent o f proxy signature based on e lliptic curve[ J]. Journal o f X idian Un iversity: Na tura l Sc ience Ed ition, 2005, 32( 2) : 280- 283. ( in Ch inese)

Memo

Memo:
-
Last Update: 2013-04-24