[ 1] Pang J S. Necessary and suffic ient cond itions fo r the conve rgence o f itera tive me thods fo r the linear com plem enta rity prob lems[ J] . J Optim Theo ry App,l 1984, 42: 1-17.
[ 2] A lefe ld G, W Z Y, S Z H. Enclosing so lu tions of linear com plem entarity prob lem s forH-m atr ices[ J] . Re liable Computing,2004, 10: 423-435.
[ 3] A lefe ld G, Chen X, Po tra F A. Num erica l va lidation of so lutions o f linear com plem entarity problem s[ J]. Num erM a th, 1999,83: 1-23.
[ 4] 王忠英, 王征宇, 沈祖和. 解一类线性互补问题的区间方法[ J] . 高等学校计算数学学报, 2006, 28( 2): 185-192.
W ang Zhongy ing, W ang Zhengyu, Shen Zuhe. Inte rva l m ethods for linear comp lementar ity prob lem s[ J]. Numerical Mathe matics Journal o f ChineseUn iversities, 2006, 28( 2): 185-192. ( in Chinese)
[ 5] 吴业军, 王天荆, 沈祖和. 解线性互不问题的一类区间方法[ J] . 南京大学学报: 数学半年刊, 2006, 22( 1): 140-148.
W u Y ejun, W ang T ian jing, Shen Zuhe. An in terva lm ethod for so lv ing linear comp lementar ity problem s[ J]. Journa l of Nanjing Un iversityM athem atical B iquarterly, 2006, 22( 1): 140-148. ( in Chinese)
[ 6] M oo re R E. Interval ar ithme tic and autom atic erro r analysis in d ig ita l compu ting[ D]. Stanford: S tanfo rd Un iversity, 1962.
[ 7] M oo re R E. Interval Ana ly sis[M ]. New Jersey: Prentice-H al,l 1966.
[ 8] M oo re R E. M ethods and App lications o f In terva lAna lysis[M ]. Ph ilade lph is: SIAM, 1979.
[ 9] Neeeum aier A. Interva lM e thods for Sy stem s of Equations [M ]. New Yo rk: C am bridgeUn ive rsity Press, 1990.
[ 10] Ba i Z Z, E vans D J. M a trix mu ltisp litting re laxa tion m ethods fo r linear comp lem entar ity problem s[ J] . Com putM ath, 1997,63: 309-326.
[ 11] 白中治. 并行区间矩阵多分裂AOR 算法及其收敛性[ J]. 应用数学与力学, 1999( 20): 169-174.
Ba i Zhongzh.i Paralle l interval m atr ix mu ltisp litting AOR m ethods and their convergence[ J]. App liedM a them a tics andMe chanics, 1999( 20): 169-174. ( in Ch inese)