|Table of Contents|

Applying Wavelets to Autocorrelated Process Monitoring(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2010年04期
Page:
31-34
Research Field:
Publishing date:

Info

Title:
Applying Wavelets to Autocorrelated Process Monitoring
Author(s):
Shi Rongzhen1Shi Guosheng2
1.Department of Electromechanical Engineering,Nanjing Normal University Taizhou College,Taizhou 225300,China;2.School of Electrical and Automation Engineering,Nanjing Normal University,Nanjing 210042,China
Keywords:
mu lt-i scale wave lets analysis autocorre lated process averag e run leng th contro l cha
PACS:
TB114.2
DOI:
-
Abstract:
T raditiona l contro l charts a re based on the statistical assum ption tha tm easurements are independent and identica lly distributed. In industry applications, how ever, observa tions a re au to corre la ted due to the inherent cause o f the process. Thus trad itiona lm ethods w ill be inappropr ia te for au to co rre la ted process m onitor ing. In this paper, mu lt-i scale w avelets analysis is introduced to autocorre la ted processes. Process mon ito ring is reached by integrating Shewhart contro l charts w ith mu lt-i scale wave lets analysis. Fina lly, take ARMA ( 1, 1) pro cess as an examp le. M onte-Car lo simu lations about step-type, trend- type, cyc les-type, and a lternating-type disturbances in autocorrelated processes are perform ed to expla in the av erage run leng th ( ARL) property o f the contro l charts. The sim ulation resu lts show that the m ethod is e-f fective.

References:

[ 1] 贾新章, 李京苑. 统计过程控制与评价, Cp k、SPC 和PPM 技术[M ]. 北京: 电子工业出版社, 2004. Jia Xinzhang, Li Jingyuan. Statistica lProcess Contro l and Eva luation cpk , SPC, and PPM Techno logy[M ]. B eijing: E lectron ic Industry Press, 2004. ( in Chinese)
[ 2] Jun Du, ZhangWu, Roger J Jiao. An improved adaptive CUSUM con tro l chart fo rmon ito ring process m ean[ C] / / Cybernetics and Inte lligent System s. Chengdu: IEEE Press, 2008: 849-854.
[ 3] Danie lW. Apley and hyun cheo l lee design of exponentia lly we ighted mov ing av erage contro l charts fo r autoco rre lated processes w ith mode l uncerta inty[ J]. Technom etr ics, 2003, 45( 3): 187-198.
[ 4] M a Y izhong, Zhao Fengyu. A new approach to d iagnos ing signa ls from m ultivariate EWMA contro l cha rt[ J]. Inte rnational Jou rnal of Plant Eng ineer ing andM anagem ent, 2003, 8( 4): 193-198.
[ 5] Yang Jennhwa ,i Yang M iinshen. A contro l chart pa ttern recogn ition system using a statistical correlation coefficient m ethod [ J] . Com puter and Industria l Eng ineering, 2005, 48: 205-221.
[ 6] 王振龙, 胡永宏. 应用时间序列分析[M ]. 北京: 科学出版社, 2007. W ang Zhen long, Hu Yonghong. App lied T im e Ser ies Ana lys is [M ]. Be ijing: Sc ience Press, 2007. ( in Chinese)
[ 7] YousefA lA ssa .f Recogn ition of contro l chart patterns us ing mu lt-i reso lu tion wave le ts ana lysis and neura l ne tw orks[ J]. Compu-t e rs and Industria Eng ineer ing, 2004, 47: 17-29.
[ 8] Zheng Chen, Susan Lu, Sarah Lam. A hybr id system for SPC concurrent pa ttern recogn ition[ J]. Advanced Eng ineer ing Inform atics, 2007, 21: 303-310.

Memo

Memo:
-
Last Update: 2013-04-02