|Table of Contents|

Numerical Simulation of Entrainment Ratio of Steam Ejector with Petaliform Nozzle(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2012年01期
Page:
29-32
Research Field:
Publishing date:

Info

Title:
Numerical Simulation of Entrainment Ratio of Steam Ejector with Petaliform Nozzle
Author(s):
Zhang YiChen DandanShi Song
School of Energy and Mechanical Engineering,Nanjing Normal University,Nanjing 210042,China
Keywords:
steam ejectorentrainment ratiopetaliform nozzlenumerical simulation
PACS:
V233
DOI:
-
Abstract:
Steam ejector with petaliform nozzle can provide flare gas burner with air. Entrainment ratio is the most important operating parameter of the ejector. Compressible fluid conservation equations of momentum,energy and species are used to compute flow process in the ejector. It is found that the ejector achieves a maximum entrainment ratio when it operates at an optimal primary steam flow. Shock wave appears at exit of petaliform nozzle when steam flow is too large,which leads to the decrease of the entrainment ratio. When the nozzle exit position ( NXP) is located in mixture room,the ejector gains a greater entrainment ratio than out of mixture room. The farther NXP from mixture room is,the less the entrainment ratio is. When a converging - diverging tube is connected to the mixture room,the entrainment ratio is as 1. 5 times large as that connected to a straight tube. The results can be useful for the choice of the operating parameters and design of steam ejector with petaliform nozzle.

References:

[1]季建刚,倪海,黎立新,等. 蒸汽喷射压缩器的变工况特性模拟与分析[J]. 化工学报, 2008, 59( 3) : 558-560. Ji Jiangang,Ni Hai,Li Lixin,et al. Performance simulation and analysis of steam ejector under different operating condition [J]. Journal of Chemical Industry and Engineering,2008, 59( 3) : 558-560. ( in Chinese) [2]Yu Jianlin,Li Yanzhong. A theoretical study of a novel regenerative ejector refrigeration cycle[J]. International Journal of Refrigeration, 2007,30( 3) : 464-470.[3]Zhu Yinhai,Cai Wenjian,Wen Changyun,et al. Simplified ejector model for control and optimization[J]. Energy Conversion and Management,2008,49( 6) : 1 424-1 432.
[4]段永涛,文怀兴,张德翱. 基于热平衡分析法的喷射器引射系数计算与分析[J]. 机械工程学报,2005, 41( 3) : 42-46. Duan Yongtao,Wen Huaixing,Zhang Deao. Calculation and analysis on ejecting coefficient of the ejector based on analysis of heat balance[J]. Chinese Journal of Mechanical Engineering,2005, 41( 3) : 42-46. ( in Chinese)
[5]祝银海,厉彦忠,鱼剑琳,等. 基于制冷剂R141B 的喷射器混合模型及其实验验证[J]. 化工学报,2008,59 ( 9) : 2 188-2 193. Zhu Yinhai,Li Yanzhong,Yu Jianlin,et al. Experimental validation of a hybrid ejector model with refrigerant R141B[J]. Journal of Chemical Industry and Engineering,2008, 59( 9) : 2 188-2 193. ( in Chinese)
 [6]Szabolcs Vargaa,Armando C Oliveiraa,Bogdan Diaconub. Influence of geometrical factors on steam ejector performance— A numerical assessment[J]. International Journal of Refrigeration,2009,32( 7) : 1 694-1 701.
[7]张鲲鹏,薛飞,潘卫明,等. 高压气体引射器的试验研究和仿真[J]. 热科学与技术,2004,3 ( 2) : 133-138. Zhang Kunpeng,Xue Fei,Pan Weiming,et al. Experimental investigation and numerical simulation of high-pressure gas ejector [J]. Journal of Thermal Science and Technology,2004,3 ( 2) : 133-138. ( in Chinese) [8]单勇,张靖周. 弯曲混合管引射系统引射- 混合特性数值研究[J]. 南京航空航天大学学报, 2008, 40( 2) : 137-141. Shan Yong,Zhang Jingzhou. Numerical computation for pumping and mixing performance on mixer-ejector with curved mixing duct[J]. Journal of Nanjing University of Aeronautics and Astronautics,2008, 40( 2) : 137-141. ( in Chinese)
[9]Pianthong K,Seehanam W,Behnia M,et al. Investigation and improvement of ejector refrigeration system using computational fluid dynamics technique[J]. Energy Conversion and Management,2007,48( 10) : 2 556-2 564.
[10]Zhu Yinhai,Cai Wenjian,Wen Changyun,et al. Numerical investigation of geometry parameters for design of high performance ejectors[J]. Applied Thermal Engineering,2009,29( 5 /6) : 898-905.

Memo

Memo:
-
Last Update: 2013-03-11