|Table of Contents|

Library Reading Room Management System Based on PCA and ArcGIS Network Analysis Algorithm(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2012年02期
Page:
57-63
Research Field:
Publishing date:

Info

Title:
Library Reading Room Management System Based on PCA and ArcGIS Network Analysis Algorithm
Author(s):
Chen Xuanze13Huo Jing2Fei Feng34Chen Ying5Ma Qingyu1
1.School of Physics and Technology,Nanjing Normal University,Nanjing 210046,China
Keywords:
intelligent monitoringprincipal component analysisGIS network analysislibrary reading room management
PACS:
G250.73
DOI:
-
Abstract:
Aiming at the disadvantages of the current video monitoring system’s lacking intelligence and over-reliance on eye examination and identification,a new library reading room management technique is proposed for the application of Jingwen Library in Nanjing Normal University according to the libarary's requirements. Based on the principal component analysis ( PCA) algorithm and network analysis algorithm model in ArcGISTM,target detection and identification as well as visualization techniques are performed. Head outline segmentation is firstly carried out with the background subtraction method and sample training is conducted with Singular value decomposition algorithm. After the PCA transform,target match is achieved for the target image with the calculated feature vectors. The seating information query and navigation system is then set up by using the network model and the application management is built by using the AO function control and application software modules to guarantee information security and stable operation for library. The experimental results prove that the proposed system has good seating identification accuracy and suggests an active role in modernization, intelligentization and humanization for network library reading room management.

References:

[1]Green M W. The Appropriate and Effective Use of Security Technologies in U. S. Schools: A Guide for Schools and Law Enforcement Agencies[EB/OL]. [2008-06-05]. http: / /www. ncjrs. gov /school /178265_1. pdf.
[2]Steffens J,Elagn E,Neven H. Person spotter-fast and robust system for human detection,tracking and recognition[C]/ / Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition. New York: IEEE,1998.
[3]Skea D,Kuwahara R. A control matching algorithm[J]. Pattern Recognition,1993,26( 2) : 269-274.
[4]易兴辉,王国胤,胡峰. 一种新的基于粗糙集的动态样本识别算法[J]. 南京大学学报: 自然科学版,2010,46( 5) : 501- 506. Yi Xinghui,Wang Guoyin,Hu Feng. A new dynamic sample recognition algorithm based on rough set[J]. Journal of Nanjing University: Natural Sciences Edition,2010,46( 5) : 501-506. ( in Chinese)
[5]Schapire R E,Singer Y. Improved boosting algorithm[C]/ / Proceeding of the 13th Conference on Machine Learning. Italy: Morgan Kaufmann,1996.
[6]Freund Y,Schapire R E. Experiments with a new boosting algorithm[C]/ / Procedings of the 13th Conference on Machine Learning. Italy: Morgan Kaufmann,1996.
[7]Sasiadek J Z,Wang Q,Zeremba M B. Fuzzy adaptive Kalman filtering for INS /GPS data fusion[C]/ / Proceedings of the 2000 IEEE International Symposium on Intelligent Control. Reston: Americal Institute of Aeronautics and Astronautics,2000: 181- 186.
[8]Cipra T,Romera R. Robust Kalman filter and its application in time series analysis[J]. Kybernetika,1999,27( 6) : 481- 494.
[9]Legter G R Jr,Young Y T. A mathematical model for computer image tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1982,4( 6) : 583-594.
[10]Zeiler M. Modeling Our World: The ESRI Guide to Geodatabase Design[M]. New York: Environmental System Research Institute,1999: 129-146.
[11]吴立新,史文中. 地理信息系统原理与算法[M]. 北京: 科学出版社,2003: 28-29. Wu Lixin,Shi Wenzhong. Principles and Algorithms of GISs[M]. Beijing: Science Press,2003: 28-29. ( in Chinese)
[12]廖士中,丁立中,贾磊. 支持向量回归多参数的同时调节[J]. 南京大学学报: 自然科学版,2009,45( 5) : 587-591. Liao Shizhong,Ding Lizhong,Jia Lei. Simultaneous tuning of multiple parameters for support vector regression[J]. Journal of Nanjing University: Natural Sciences Edition,2009,45( 5) : 587-591. ( in Chinese)
[13]邸凯昌. 空间数据发掘与知识发现[M]. 武汉: 武汉大学出版社,2001: 18-19. Di Kaichang. Spatial Data Mining and Knowledge Discovery[M]. Wuhan: Wuhan University Press,2001: 18-19. ( in Chi-nese)
[14]龚健雅,杜道生,李清泉,等. 当代地理信息技术[M]. 北京: 科学出版社,2004: 27-28. Gong Jianya,Du Daosheng,Li Qingquan,et al. The Current Geographic Information Technology[M]. Beijing: Science Press,2004: 27-28. ( in Chinese)
[15]崔修浩,吴健平. 空间矢量数据存储方式与索引机制的发展[J]. 遥感技术与应用,2002,17( 4) : 215-219. Cui Xiuhao,Wu Jianping. Development of approach in storage and index for spatial vector data[J]. Remote Sensing Technology and Application,2002,17( 4) : 215-219. ( in Chinese)
[16]陈泽民. 中国矢量数据交换格式的应用研究[J]. 武汉大学学报: 信息科学版,2004,29( 5) : 451-455. Chen Zemin. Application research on CNSDTF-VCT[J]. Geomatics and Information Science of Wuhan University,2004,29 ( 5) : 451-455. ( in Chinese)
[17]赵晓琴,孙毅中,闻雅. 面向事件的地理要素时空回溯研究[J]. 南京师范大学学报: 自然科学版,2009,32( 4) : 117- 121. Zhao Xiaoqin,Sun Yizhong,Wen Ya. Research on the event oriented spatio-temporal retrospect of geographical features[J]. Journal of Nanjing Normal University: Natural Science Edition,2009,32( 4) : 117-121. ( in Chinese)
[18]徐艳,孙燕. 无线传感网络时空数据聚集查询算法[J]. 南京师范大学学报: 工程技术版,2008,8( 4) : 39-42. Xu Yan,Sun Yan. Spatio-temporal data aggregation query algorithm in wireless sensor networks[J]. Journal of Nanjing Normal University: Engineering and Technology Edition,2008,8( 4) : 39-42. ( in Chinese)
[19]Moghaddam B,Pentlan A. Beyond linear Eigen spaces: Bayesian matching for face recognition[C]/ / Face Recognition: From Theory to Application. Springer-Verilog,1998: 230-243.
[20]Yang J,Zhang D,Fringe A F,et al. Two-dimensional PCA: a new approach to appearance-based face representation and recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26( 1) : 131-137.
[21]Rowley H A. Neural network-based human face detection[D]. Pittsburgh: School of Computer Science,Carnegie Mellon University, 1999.
[22]Cuisenaire O,Macq B. Fast Euclidean distance transformations by propagation using multiple neighborhoods[J]. Computer Vision and Image Understanding,1999,76( 2) : 163-172.
[23]Viola P,Jones M. Rapid object detection using a boosted cascade of simple features[J]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2001( 1) : 511-518.

Memo

Memo:
-
Last Update: 2013-03-11