|Table of Contents|

An Empirical Comparison of Label Detection Techniques for Multi-Label Classification(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2012年04期
Page:
55-61
Research Field:
Publishing date:

Info

Title:
An Empirical Comparison of Label Detection Techniques for Multi-Label Classification
Author(s):
Liu JialiXu Jianhua
School of Computer Science and Technology,Nanjing Normal University,Nanjing 210023,China
Keywords:
multi-label classificationk-nearest neighbor algorithm linear regression threshold functionmulti-output linear regression logistic regressiondiscrete Bayesian rule
PACS:
TP18
DOI:
-
Abstract:
Now some multi-label classification methods cascade two different classification techniques in essence. The former is to build a label ranking system, and the latter to detect relevant labels effectively and improve classification performance further. To compare the different detection techniques,we collect four general label detection approaches: linear regression threshold,multiple output linear regression, logistic regression and discrete Bayesian methods. With k-nearest neighbor algorithm as a baseline method,we conduct an extensive experimental comparison on ten benchmark data sets. Our experimental results demonstrate that multiple output linear regression technique is recommendable,according to both computational time and classification performance.

References:

[1] Tsoumakas G,Katakis I. Multi-label classification: an overview[J]. International Journal of Data Warehousing and Mining, 2007,3 ( 3) : 1-13.
[2] Tsoumakas G,Katakis I,Vlahavas I. Mining multi-label data[C]/ /Maimon O,Rokach L. Data Mining and Knowledge Discovery Handbook. 3rd ed. New York: Springer, 2010: 667-685.
[3] Xu J. An extended one-versus-rest support vector machine for multi-label classification[J]. Neurocomputing,2011,74 ( 17) : 3 114-3 124.
[4] Madjarov G,Kocev D,Gjorgjevik D, et al. An extensive experimental comparison of methods for multi-label learning[J]. Pattern Recognition, 2012, 45( 9) : 3 084-3 104.
[5] Elisseeff A,Weston J. A kernel method for multi-labelled classification[C]/ /Proceedings of the 14th Conference on Neural Information Processing Systems. Canada: Vancouver, 2001: 681-687.
[6] Zhang M L,Zhou Z H. Multilabel neural networks with application to function genomics and text categorization[J]. IEEE Transactions on Knowledge and Data Engineering, 2006, 18( 10) : 1 338-1 351.
[7] Spyromitros E,Tsoumakas G,Vlahavas I. An empirical study of lazy multilabel classification algorithms[C]/ /Proceedings of the 5th Hellenic Conference on Artificial Intelligence. Greece: Syros, 2008,LNAI 5138: 401-406.
[8] Zhang M L,Zhou Z H. ML-kNN: a lazy learning approach to multi-label learning[J]. Pattern Recognition,2007,40 ( 7) : 2 038-2 048.
[9] Madjarov G,Gjorgjevik D,Dzersoki S. Two stage architecture for multi-label learning[J]. Pattern Recognition,2012,45 ( 3) : 1 019-1 034.
[10] Petrovskiy M,Glazkova V. Linear methods for reduction from ranking to multilabel classification[C]/ /Proceedings of the 19th Australia Joint Conference on Artificial Intelligence. Australia: Hobart, 2006,LNCS 4304: 1 152-1 156.
[11] Hastie T,Tibshirani R,Friedman J. The Elements of Statistical Learning[M]. New York: Springer, 2001.
[12] Duda R O,Hart P E,Stork D G. Pattern Classification[M]. 2nd ed. New York: John Wiley and Sons, 2001.
[13] 张学工. 模式识别[M]. 3 版. 北京: 清华大学出版社, 2010. Zhang Xuegong. Pattern Recognition[M]. 3rd ed. Beijing: Tsinghua University Press, 2010. ( in Chinese)
[14] Cheng W W,Hullermeier E. Combining instance-based learning and logistic regression for multilabel classification[J]. Machine Learning, 2009, 76( 2 /3) : 211-225.
[15] Vach W,Robner P,Schumacher M. Neural networks and logistic regression: part Ⅰ[J]. Computational Statistics and Data Analysis, 1996, 21( 6) : 661-682.
[16] Vach W,Robner P,Schumacher M. Neural networks and logistic regression: part Ⅱ[J]. Computational Statistics and Data Analysis, 1996, 21( 6) : 683-701.
[17] Tsoumakas. Multi-label data sets[DB/OL].[2012-04-10]. http: / /mulan. sourceforge. net /datasets. html, 2010.
[18] Zhang M L. Image data set[DB/OL].[2012-04-10]. http: / /cse. seu. edu. cn /people /zhangml, 2009.

Memo

Memo:
-
Last Update: 2013-03-21