|Table of Contents|

Research on Data Partition Method for Parallel Interpolation of Discrete Point Cloud(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2013年02期
Page:
63-67
Research Field:
Publishing date:

Info

Title:
Research on Data Partition Method for Parallel Interpolation of Discrete Point Cloud
Author(s):
Qian Chen1Dou Wanfeng12
1.School of Computer Science and Technology,Nanjing Normal University,Nanjing 210023,China) (
2.Jiangsu Research Center of Information Security and Privacy Technology,Nanjing 210097,China
Keywords:
digital elevation modelparallel interpolationdiscrete point clouddata partition
PACS:
TP301.5
DOI:
-
Abstract:
Interpolation is the core analysis method of the digital elevation model,which is also a common means of the construction of the digital elevation model.It consumes a lot of time to generate an interpolated DEM when discrete point cloud data is magnitude.Applied parallel computing to interpolation calculation can significantly shorten the calculation time.Taking the point cloud data distribution characteristics into consideration,this paper raises a data partition method,which is used for parallel interpolation of discrete cloud points to generate grid DEM.This approach quantifies the processing time of four procedures,such as input,searching neighborhood,interpolation calculation and output.This method can keep the balance of the processing time of the sub-blocks thereby improving the efficiency of parallel interpolation.

References:

[1] Kang-tsung Chang.地理信息系统导论[M].北京:科学出版社,2003:245.
Kang-tsung Chang.Introduction of Geographic Information System[M].Beijing:Science Press,2003:245.(in Chinese)
[2]刘南,刘仁义.地理信息系统[M].北京:高等教育出版社,2002.
Liu Nan,Liu Renyi.Geographic Information System[M].Beijing:Higher Education Press,2002.(in Chinese)
[3]Ann Chervenak.The data arid:Towards an architecture for the distributed management and analysis of large scientific datasets[J].Journal of Network and Computer Application,2000,23:187-200.
[4]王永杰,孟令奎,赵春宇.基于Hilbert空间排列码的海量空间数据划分算法研究[J].武汉大学学报:信息科学版,2007,37(7):650-653.
Wang Yongjie,Meng Lingkui,Zhao Chunyu.Spatial partitioning of massive data based on Hilbert spatial ordering code[J].Geomatics and Information Science of Wuhan University,2007,37(7):650-653.(in Chinese)
[5]周艳,朱庆,张叶延.基于Hilbert曲线层次分解的空间数据划分方法[J].地理与地理信息科学,2007,23(4):13-17.
Zhou Yan,Zhu Qing,Zhang Yeyan.A spatial data partitioning algorithm based on spatial hierarchical decomposition method of Hilbert space-filling curve[J].Geography and Geo-information Science,2007,23(4):13-17.(in Chinese)
[6]Wang Shaowen,Marc P Armstrong.A quadtree approach to domain decomposition for spatial interpolation in Grid computing environments[J].Parallel Computing,2003,29:1481-1504.
[7]吕建峰,刘定生,焦伟利,等.DEM生成算法并行化研究[J].中国图像图形学报,2002,7(5):506-516.
Lü Jianfeng,Liu Dingsheng,Jiao Weili,et al.Parallel algorithms research on the interpolation of DEM[J].Journal of Image and Graphics,2002,7(5):506-516.(in Chinese)
[8]Huang Fang,Liu Dingsheng,Tan Xicheng,et al.Explorations of the implementation of a parallel IDW interpolation algorithm in a Linux cluster based parallel GIS[J].Computers and Geosciences,2011,37:126-131.
[9]Lluis Pesquer,Ana Cortes,Xavier Pons.Parallel ordinary kriging interpolation incorporating automatic variogram fitting[J].Computers and Geosciences,2011,37:464-473.
[10]Armstron M P,Marciano R.Parallel spatial interpolation[C]//Proceedings of the 11th International Symposium on Computer-Assisted Cartography(auto-Carto 11).Bethesda,MD:American Congress on Surveying and Mapping,1993:414-423.
[11]Guan Xuefeng,Wu Huayi.Leveraging the power of multi-core platforms for large-scale geospatial data processing:Exemplified by generating DEM from massive LiDAR point clouds[J].Computers and Geosciences,2010,36:464-473.
[12]胡金星,马照亭,吴焕萍,等.基于格网划分的海量数据Delaunay三角剖分[J].测绘学报,2004,33(2):163-167.
Hu Jinxing,Ma Zhaoting,Wu Huanping,et al.Massive data delaunay triangulation based on grid partition method[J].Acta Geodaetica et Cartographica Sinica,2004,33(2):163-167.(in Chinese)

Memo

Memo:
-
Last Update: 2013-06-30