|Table of Contents|

Non-Stationary Signals Analysis and Processing Based on Wavelet Transform(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2014年01期
Page:
63-69
Research Field:
Publishing date:

Info

Title:
Non-Stationary Signals Analysis and Processing Based on Wavelet Transform
Author(s):
Zhang Hanbo1Yin Yi2Yin Kuixi1
(1.School of Physics and Technology,Nanjing Normal University,Nanjing 210023,China) (2.School of Computer Science and Technology,Nanjing Normal University,Nanjing 210023,China)
Keywords:
STFTWTnon-stationarytime-frequency analysis
PACS:
TN95
DOI:
-
Abstract:
For the limitation of the Fourier transform,the wavelet transform and short-time Fourier transform are applied to typical non-stationary signals.The time-frequency characteristics obtained is more clear and accurate than traditional FFT spectrum analyze,indicating that the two time-frequency analysis methods are practical and advanced.And the multiresolution feature makes the analysis results better than short time Fourier transform.On the basis,study the anti-noise performance and choose appropriate parameter to get optimal results,improving the problem of poor frequency resolution at high frequencies of wavelet time-frequency analysis method.

References:

[1] 孙延奎.小波变换与图像、图形处理技术[M].北京:清华大学出版社,2012.
Sun Yankui.Wavelet Transform and Image Processing Technology[M].Beijing:Tsinghua University Press,2012.(in Chinese)
[2]倪林.小波变换与图像处理[M].合肥:中国科学技术大学出版社,2010.
Ni Lin.Wavelet Transform and Image Processing[M].Hefei:China Science and Technology University Press,2010.(in Chinese)
[3]Gabor D.Theory of communication[J].IEEE,1946,93(3):429-457.
[4]张威斌,曹继华,石和平,等.两种时频分析算法的分析比较[J].科技创新导报,2011,35(3):79-82.
Zhang Weibin,Cao Jihua,Shi Heping,et al.The comparison of two time-frequency analysis algorithm[J].Science and Technology Innovation Herald,2011,35(3):79-82.(in Chinese)
[5]苏峰,曲长文,简涛.时频分布的分辨率比较[J].舰船电子对抗,2011,34(1):26-29.
Su Feng,Qu Changwen,Jian Tao.Comparison of the resolution of time-frequency distribution[J].Shipboard Electronic Countermeasure,2011,34(1):26-29.(in Chinese)
[6]陶海印,任明秋,王新,等.基于时频分布技术的雷达信号分析[J].舰船电子对抗,2011,34(4):42-45.
Tao Haiyin,Ren Mingqiu,Wang Xin,et al.Analysis of radar signal based on time-frequency distribution technology[J].Shipboard Electronic Countermeasure,2011,34(4):42-45.(in Chinese)
[7]徐磊,陈宪麦,徐伟昌,等.基于小波和Wigner-Ville分布的轨道不平顺特征识别[J].中南大学学报:自然科学版,2013,44(8):3 344-3 350.
Xu Lei,Chen Xianmai,Xu Weichang,et al.Explored of track irregularity’s characteristic identification based on wavelet method and Wigner-Ville distribution[J].Journal of Central South University:Science and Technology Edition,2013,44(8):3 344-3 350.(in Chinese)
[8]王见,李金同,卢华玲,等.采用STFT-Wigner变换抑制Wigner-Ville分布交叉项[J].重庆大学学报:自然科学版,2013,36(8):15-36.
Wang Jian,Li Jintong,Lu Hualing,et al.Using STFT-Wigner transform to suppress the cross terms in Wigner-Ville distribution[J].Journal of Chongqing University:Natural Science Edition,2013,36(8):15-36.(in Chinese)
[9]王荣.一种消除威格纳分布交叉干扰项的方法[J].信息技术,2013(5):140-143.
Wang Rong.A method to eliminate the cross-interferenceterms in the Wigner distribution[J].Information Technology,2013(5):140-143.(in Chinese)
[10]张国渊,卫军朝,闫秀天.非平稳信号短时快变过程的时频分析方法及实现[J].机械科学与技术,2012,31(5):735-734.
Zhang Guoyuan,Wei Junchao,Yan Xiutian.Short rapid process time-frequency analysis method and its implementation for the non-stationary signals[J].Mechanical Science and Technology for Aerospace Engineering,2012,31(5):735-734.(in Chinese)
[11]谭善文,秦树人,汤宝平.小波基时频特性及其在分析突变信号中的应用[J].重庆大学学报:自然科学版,2001,24(2):12-17.
Tan Shanwen,Qin Shuren,Tang Baoping.Time-freguency characteristic of wavelet base and its application transient signal detection[J].Journal of Chongqing University:Natural Science Edition,2001,24(2):12-17.(in Chinese)
[12]Brito N S D,Souza B A,Pires F A C.Daubechies wavelets in quality of electrical power[C]//The 8th Internationa Conference on Hormonics and Quality of Power(ICHQP’98).Athens:IEEE,1998:511-515.
[13]Poisson O,Riou P,Meunier M.Detection and measurement of power quality disturbances using wavelet transform[J].IEEE Trans on Power Delivery,2001,15(3):1 039-1 044.
[14]Mceachem A.Roles of intelligent systems in power quality monitoing,past present and future[C]//Power Engineering Society Summer Meeting.Vancouver,BC:IEEE,2011:1 103-1 105.

Memo

Memo:
-
Last Update: 2014-03-31