|Table of Contents|

Group Lasso-Based Feature Selection for Off-networkAnalysis in Multisource Teledata(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2014年04期
Page:
77-
Research Field:
Publishing date:

Info

Title:
Group Lasso-Based Feature Selection for Off-networkAnalysis in Multisource Teledata
Author(s):
Sun Liangjun1Fan Jianfeng2Yang Wanqi2Shi Yinghuan2Gao Yang2Zhou Xinmin3
(1.Zhongbo Information Technology Research Institute Company,Nanjing 210012,China)(2.State Key Laboratory for Novel Software Technology,Nanjing University,Nanjing 210046,China)(3.Forensic Center of Jiangsu Province Public Security Bureau,Nanjing 210024,
Keywords:
telecom companiescustomer churnmultisource datafeature selectionGroup Lasso
PACS:
TP181
DOI:
-
Abstract:
With the intensified competition in the industry,customer churn analysis is becoming one of the most significant tasks for the telecom companies,which might lead great financial loss to them.Thus,using the data to predict potential off-network customers and then making business decisions to retain these customers,have drawn lots of attention nowadays.In this paper,we present a Group Lasso-based feature selection method to predict the latent off-network customers by analyzing the corresponding multisource teledata.Specifically,we utilize the cross-validation strategy to choose the optimal sets of feature groups.Extensive experiment results show that the proposed approach has the superior performance(the Precision value is 10% higher than the other methods)on a real telecom dataset derived by a certain city in a prefectural city of Jiangsu.

References:

[1] 王雷,陈松林,顾学道.客户流失预警模型及其在电信企业的应用[J].电信科学,2006,22(9):47-51.
Wang Lei,Chen Songlin,Gu Xuedao.Analysis and application for national telecoms of customer churn alarm models[J].Telecommunication Science,2006,22(9):47-51.(in Chinese)
[2]田玲,邱会中,郑莉华.基于神经网络的电信客户流失预测主题建模及实现[J].计算机应用,2007,27(9):2 294-2 297.
Tian Ling,Qiu Huizhong,Zheng Lihua.Telecom churn prediction modeling and application based on neural network[J].Journal of Computer Application,2007,27(9):2 294-2 297.(in Chinese)
[3]Richter Y,Yom-Tov E,Slonim N.Predicting customer churn in mobile networks through analysis of social groups[C]//Proceedings of SIAM International Conference on Data Mining.Columbus,2010:732-741.
[4]Idris Adnan,Asifullah Khan,YeonSoo Lee.Intelligent churn prediction in telecom:employing mRMR feature selection and RotBoost based ensemble classification[J].Applied Intelligence,2013,39(3):659-672.
[5]Guyon,Isabelle,André Elisseeff.An introduction to variable and feature selection[J].The Journal of Machine Learning Research,2003(3):1 157-1 182.
[6]Cong Y,Yuan J S,Liu J.Sparse reconstruction cost for abnormal event detection[C]//Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition.IEEE Conference Society,2011:3 449-3 456.
[7]R Tibshirani.Regression shrinkage and selection via the lasso[J].Journal of the Royal Statistical Society:Series B(Methodological),1996,58(1):267-288.
[8]Fan Jianqing,Li Runze.Variable selection via nonconcave penalized likelihood and its oracle properties[J].Journal of the American Statistical Association,2001,96(456):1 348-1 360.
[9]Robert Tibshirani,Michael Saunders.Sparsity and smoothness via the fused lasso[J].Journal of the Royal Statistical Society:Statistical Methodology,2005,67(1):91-108.
[10]Zou Hui.The adaptive lasso and its oracle properties[J].Journal of the American Statistical Association,2006,101(476):1 418-1 429.
[11]Lukas Meier,Sara Van De Geer,Peter Bühlmann.The group lasso for logistic regression[J].Journal of the Royal Statistical Society:Statistical Methodology,2008,70(1):53-71.
[12]Yuan Ming,Lin Yi.Model selection and estimation in regression with grouped variables[J].Journal of the Royal Statistical Society:Statistical Methodology,2006,68(1):49-67.
[13]Francis R Bach.Consistency of the group lasso and multiple kernel learning[J].The Journal of Machine Learning Research,2008(9):1 179-1 225.
[14]Jerome Friedman,Trevor Hastie,Robert Tibshirani.A note on the group lasso and a sparse group lasso[J/OL].[2014-07-20]http://arxiv.org/abs/1001.0736.
[15]Beck,Amir,Marc Teboulle.A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J].SIAM Journal on Imaging Sciences,2009,2(1):183-202.
[16]Liu Jun,Ji Shuiwang,Ye Jieping.SLEP:Sparse Learning with Efficient Projections[M].TEMPE:Arizona State University,2009.
[17]Yu L,Liu H.Feature selection for high-dimensional data:a fast correlation-based filter solution[C]//Proceedings of the Twentieth International Conference on Marchine Learning(ICML 2003).Washington DC,2003.

Memo

Memo:
-
Last Update: 2014-12-31