[1] HOLLAND J H. Adaptation in nature and artificial systems[M]. Ann Arbor:University of Michigan Press,1975.
[2] TUNCER A,YILDIRIM M. Dynamic path planning of mobile robots with improved genetic algorithm[J]. Computers & electrical engineering,2012,38(6):1 564-1 572.
[3] RAJA R,DUTTA A,VENKATESH K S. New potential field method for rough terrain path planning using genetic algorithm for a 6-wheel rover[J]. Robotics & autonomous systems,2015,72(C):295-306.
[4] IMEN D,KINZA N M,ASSIA L. A new genetic algorithm for flexible job-shop scheduling problems[J]. Journal of mechanical science and technology,2015,29(3):1 273-1 281.
[5] ISHIKAWA S,KUBOTA R,HORIO K. Effective hierarchical optimization by a hierarchical multi-space competitive genetic algorithm for the flexible job-shop scheduling problem[J]. Expert systems with applications,2015,42(24):9 434-9 440.
[6] KURDI M. An effective new island model genetic algorithm for job shop scheduling problem[J]. Computers & operations research,2016,67:132-142.
[7] CHEN J C,WU C C,CHEN C W,et al. Flexible job shop scheduling with parallel machines using Genetic Algorithm and Grouping Genetic Algorithm[J]. Expert systems with applications,2012,39(11):10 016-10 021.
[8] PAUL P V,MOGANARANGAN N,KUMAR S S,et al. Performance analyses over population seeding techniques of the permutation-coded genetic algorithm:an empirical study based on traveling salesman problems[J]. Applied soft computing,2015,32(C):383-402.
[9] 杨玉,李慧,戴红伟. 改进量子交叉遗传算法在TSP问题中的应用[J]. 南京师范大学学报(工程技术版),2012,12(9):43-48.
YANG Y,LI H,DAI H W. Improved quantum crossover based GA and its application to traveling salesman problem[J]. Journal of Nanjing normal university(engineering and technology edition),2012,12(9):43-48. (in Chinese)