|Table of Contents|

Research Progress of Bio-Ceramic 3D Printing Technology(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2017年01期
Page:
1-
Research Field:
增材制造(3D打印)
Publishing date:

Info

Title:
Research Progress of Bio-Ceramic 3D Printing Technology
Author(s):
Si Yunqiang1Li Zongan12Zhu Liya1Lü Chaofan1Wang Junjie1Li Kelou1Yang Jiquan1
(1.Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing,Nanjing Normal University,Nanjing 210042,China)(2.School of Mechanical Engineering,Southeast University,Nanjing 211189,China)
Keywords:
bio-ceramicmedical fieldsindividual needs3D printing technology
PACS:
TP205
DOI:
10.3969/j.issn.1672-1292.2017.01.001
Abstract:
In the recent decades,bio-ceramic has made a significant progress in bone reconstruction,dental repair and other medical fields,but the traditional manufacturing process can not solve people’s individual needs,therefore,3D printing technology begins to be widely used in the production of bio-ceramic materials. This paper summarizes the research progress of bio-ceramic 3D printing technology. Firstly,it describes the classification and characteristics of bio-ceramic,compares the advantages of 3D printing technology with traditional processing technology,and then reviews some research of domestic and foreign experts in molding materials,performance optimization and bone modeling and molding technology. Finally,the application and development prospects are concluded.

References:

[1] HING K A. Bioceramic bone graft substitutes:influence of porosity and chemistry[J]. International journal of applied ceramic technology,2005,2(3):184-199.
[2]徐慧芳,冷泠,赵婉雨. 生物陶瓷应用与市场分析[J]. 新材料产业,2016(1):13-16.
XU H F,LENG L,ZHAO W Y. Application and market analysis of bioceramics[J]. Advanced materials industry,2016(1):13-16.(in Chinese)
[3]MOURINO V,CATTALINI J P,ROETHER J A,et al. Composite polymer-bioceramic scaffolds with drug delivery capability for bone tissue engineering[J]. Expert opinion on drug delivery,2013,10(10):1 353-1 365.
[4]BUTSCHER A,BOHNER M,HOFMANN S,et al. Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing[J]. Acta biomaterialia,2011,7(3):907-920.
[5]蒋明辉,蔡立宏,雷青,等. 3D打印技术在骨科临床的应用研究及展望[J]. 中华损伤与修复杂志,2016,11(4):288-290.
JIANG M H,CAI L H,LEI Q,et al. Application research and prospect of 3D printing technology in department of orthopedics[J]. Chinese journal of injury repair and wound healing,2016,11(4):288-290.(in Chinese)
[6]郭维安,李爽,高雅洁,等. 多孔羟基磷灰石生物陶瓷的制备及应用[J]. 广东化工,2016,43(14):92-96.
GUO W A,LI S,GAO Y J,et al. The preparation and application of porous hydroxyapatite bioceramics[J]. Guangdong chemical industry,2016,43(14):92-96.(in Chinese)
[7]MASAHIRO O,TAKUYA M. Fabrication methods of hydroxyapatite nanocomposites[J]. Nano biomedicine and engineering,2016,8(1):15-26.
[8]LASGORCEIX M,CHAMPION E,CHARTIER T,et al. Shaping by microstereolithography and sintering of macro-micro-porous silicon substituted hydroxyapatite[J]. Journal of the European ceramic society,2016,36(4):1 091-1 101.
[9]Lü S C,WANG Z J,SHU M. Bioactivity of wound healing using nano bioceramic[J]. Materials research innovations,2015,19(1):331-334.
[10]KRAI K,APICHART L,GOBWUTE R,et al. Influence of the nano hydroxyapatite powder on thermally sprayed HA coatings onto stainless steel[J]. Surface and coatings technology,2016(306):181-186.
[11]钱超,樊英姿,孙健. 三维打印技术制备多孔羟基磷灰石植入体的实验研究[J]. 口腔材料器械杂志,2013,22(1):22-27.
QIAN C,FAN Y Z,SUN J. Experimental study on preparation of porous hydroxyapatite implanted by 3D printing technology[J]. Chinese journal of dental materials and devices,2013,22(1):22-17.(in Chinese)
[12]唐月军,唐月锋,王心玲,等. 氧化锆增韧羟基磷灰石纳米复相多孔生物陶瓷的制备与性能[J]. 中国组织工程研究与临床康复,2009,13(29):5 723-5 726.
TANG Y J,TANG Y F,WANG X L. Preparation and performance of zirconium oxide-toughened hydroxyapatite nano-composite porous bioceramic[J]. Chinese journal of tissue engineering research,2009,13(29):5 723-5 726.(in Chinese)
[13]张海峰,杜子婧,姜闻博,等. 3D打印PLA-HA复合材料与骨髓基质细胞的相容性研究[J]. 组织工程与重建外科,2015,11(6):349-353.
ZHANG H F,DU Z Q,JIANG W B. Biocompatibility research of three-dimensional printed PLA-HA composite with bone marrow stromal cells in vitro[J]. Journal of tissue engineering and reconstructive surgery,2015,11(6):349-353.(in Chinese)
[14]ZHU Y Z,LIU Q B,XU P,et al. Bioactivity of calcium phosphate bioceramic coating fabricated by laser cladding[J]. Laser physics letters,2016,13(5):055601.
[15]FAHIMIPOUR F,KASHI T S J,KHOSHROO K,et al. 3D-printed β-TCP/collagen scaffolds for bone tissue engineering[J]. Dental materials,2016,32(1):e57.
[16]曹雪飞. 3D打印β-磷酸三钙负载INH、RFP/PLGA缓释微球的生物安全性及成骨作用的研究[D]. 兰州:兰州大学,2016.
CAO X F. The biological safety and osteogenesis study of 3D printing of β-TCP scaffold loaded with sustained-release microspheres of isoniazid and rifampin/PLGA[D]. Lanzhou:Lanzhou University,2016.(in Chinese)
[17]张睿,张彭风,薛润苗,等. 碳纤维增强磷酸钙骨水泥[J]. 大连工业大学学报,2012,3(6):465-468.
ZHANG R,ZHANG P F,XUE R M. The calcium phosphate bone cement reinforced by carbon fiber[J]. Journal of Dalian polytechnic university,2012,3(6):465-468.(in Chinese)
[18]FIELDING G A,BANDYOPADHYAY A,BOSE S. Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds[J]. Dental materials,2012,28(2):113-122.
[19]赖毓霄,李龙,李烨,等. 基于新型3D 打印技术的复合活性多孔骨修复支架的研发[C]//2015年全国高分子学术论文报告会论文摘要集——主题F-生物医用高分子. 北京:中国学术期刊电子杂志社,2015:54.
LAI Y X,LI L,LI Y,et al. Research and development of composite active porous bone repair stent based on new 3D printing technology[C]//Abstracts of papers on the report of the national high molecular academic papers in 2015—The theme of F-biomedical polymers. Beijing:China Academic Journal Electronic Publishing House,2015:54.(in Chinese)
[20]FARZAD L,ROBIN D,EHSAN T. Additive manufacturing of 3D structures with non-newtonian highly viscous fluids:finite element modeling and experimental validation[J]. Additive manufacturing,2017,13:113-123.
[21]SAU Y C,YUKKEE C P,ANNE-CELINE K,et al. Additive manufacturing of hydrogel-based materials for next-generation implantable medical devices[J]. Science robotics,2017,2(2):eaah6451.
[22]STENDER B,KRUPP A,KUHN D,et al. High-precision 3D printing for the fabrication of photonic elements[J]. CLEO,2016:AF1J.3.
[23]HWANG S,REYES E I,MOON K S,et al. Thermo-mechanical characterization of metal/polymer composite filaments and printing parameter study for fused deposition modeling in the 3D printing process[J]. Journal of electronic materials,2015,44(3):771-777.
[24]郑云佩,王彦平,强小虎,等. 生物玻璃含量对β-TCP生物陶瓷结构性能的影响[J]. 兰州交通大学学报,2015,34(6):153-157.
ZHENG Y P,WANG Y P,QIANG X H,et al. Effect of content of bioglass on structure and property of β-TCP bioceramic[J]. Journal of Lanzhou jiaotong university,2015,34(6):153-157.(in Chinese)
[25]LU K,REYNOLDS W T. 3DP process for fine mesh structure printing[J]. Powder technology,2008,187(1):11-18.
[26]LU K,HISER M,WU W. Effect of particle size on three dimensional printed mesh structures[J]. Powder technology,2009,192(2):178-183.
[27]邢金龙,陈学更,何龙,等. 新型改性磷酸盐无机粘结剂热硬砂性能研究[J]. 铸造,2015,64(8):773-779.
XING J L,CHEN X G,HE L,et al. Research on novel modified phosphate inorganic binder for heat-cured sand[J]. Foundry,2015,64(8):773-779.(in Chinese)
[28]邢金龙,何龙,韩文,等. 3D砂型打印用无机粘结剂的合成及其使用性能研究[J]. 铸造,2016,65(9):851-854.
XING J L,HE L,HAN W,et al. Research on synthesis and performance of inorganic binder used in three dimensional printing of sand mold[J]. Foundry,2016,65(9):851-854.(in Chinese)
[29]VAEZI M,CHUA C K. Effects of layer thickness and binder saturation level parameters on 3D printing process[J]. The international journal of advanced manufacturing technology,2011,53(1):275-284.
[30]JASON A,DIANA O,FULLER S M,et al. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration[J]. Biomaterials,2014,35(13):4 026-4 034.
[31]刘骥远,吴懋亮,蔡杰,等. 工艺参数对3D 打印陶瓷零件质量的影响[J]. 上海电力学院学报,2015,31(4):336-340.
LIU J Y,WU M L,CAI J,et al. Influence of operating parameters on 3D printing ceramic parts[J]. Journal of Shanghai university of electric power,2015,31(4):336-340.(in Chinese)
[32]李晓燕,伍咏晖,张曙. 三维打印成型机理及其试验研究[J]. 中国机械工程,2006,17(13):1 355-1 359.
LI X Y,WU Y H,ZHANG S. Principle and experimental research of three dimensional printing[J]. China mechanical engineering,2006,17(13):1 355-1 359.(in Chinese)
[33]COX S C,THORNBY J A,GIBBONS G J,et al. 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications[J]. Materials science and engineering:C,2015,47:237-247.
[34]WIRIA F E,MALEKSAEEDI S,HE Z. Manufacturing and characterization of porous titanium components[J]. Progress in crystal growth and characterization of materials,2014,60(3-4):94-98.
[35]OLAKANMI E O,COCHRANE R F,DALGARNO K W. A review on selective laser sintering/melting(SLS/SLM)of aluminium alloy powders:processing,microstructure,and properties[J]. Progress in materials science,2015,74:401-477.
[36]RAFI H K,KARTHIK N V,GONG H,et al. Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting[J]. Journal of materials engineering and performance,2013,22(12):248-259.
[37]余东满,朱成俊,曹龙斌,等. 光固化快速成型工艺过程分析及应用[J]. 机械设计与制造,2011(10):236-238.
YU D M,ZHU C J,CAO L B,et al. Process analysis and application for rapid prototyping based on stereo lithography apparatus[J]. Machinery design and manufacture,2011(10):236-238.(in Chinese)
[38]麦淑珍,杨永强,王迪. 激光选区熔化成型NiCr 合金曲面表面形貌及粗糙度变化规律研究[J]. 中国激光,2015,42(12):88-97.
MAI S Z,YANG Y Q,WANG D. Study on surface morphology and roughness variation of NiCr alloy curved surface manufactured by selective laser melting[J]. Chinese journal of lasers,2015,42(12):88-97.(in Chinese)
[39]戚留举,李子夫,张春雨,等. 基于选择性激光熔化制备多孔钛结构的设计及分析[J]. 机械,2014,41(5):70-74.
QI L J,LI Z F,ZHANG C Y,et al. Design and analysis of manufacturing porous titanium structures based on selective laser melting[J]. Machinery,2014,41(5):70-74.(in Chinese)
[40]杨永强,叶梓恒,宋长辉,等. 一种基于三缸成型机的复合材料零件的3D打印方法:CN103480843A[P]. 2014-01-01.
YANG Y Q,YE Z H,SONG C H,et al. A 3D printing method of composite parts based on three-cylinder molding machine:CN103480843A[P]. 2014-01-01.(in Chinese)
[41]李瑞迪,魏青松,刘锦辉,等. 选择性激光熔化成形关键基础问题的研究进展[J]. 航空制造技术,2015(5):26-31.
LI R D,WEI Q S,LIU J H,et al. Research progress of key basic issue in selective laser melting of metallic powder[J]. Aeronautical manufacturing technology,2015(5):26-31.(in Chinese)
[42]王彩梅,张卫平,王刚,等. 电子束熔融快速成型技术在骨科植入物修复过程中的骨诱导能力[J]. 中国组织工程研究,2013,17(52):9 055-9 061.
WANG C M,ZHANG W P,WANG G,et al. Bone inductive potential of electron beam melting rapid prototyping technology in the repair of orthopedic implants[J]. Chinese journal of tissue engineering research,2013,17(52):9 055-9 061.(in Chinese)
[43]李祥,王成焘,张文光,等. 多孔Ti6Al4V植入体电子束制备及其力学性能[J]. 上海交通大学学报,2009,43(12):1 946-1 949.
LI X,WANG C T,ZHANG W G. Fabrication of porous Ti6Al4V implant using electron beam melting and mechanical properties[J]. Journal of Shanghai jiaotong university,2009,43(12):1 946-1 949.(in Chinese)
[44]马健超. 3D打印技术在骨结构重建的应用[D]. 长春:吉林大学,2015.
MA J C. The application of 3D printing technology in the reconstruction of bone structure[D]. Changchun:Jilin University,2015.(in Chinese)
[45]王财儒. 多孔钛合金股骨头支撑棒的设计制备及其治疗早期股骨头坏死的实验研究[D]. 西安:第四军医大学,2015.
WANG C R. Design,fabrication of porous titanium alloy rod for femoral head osteonecrosis and experimental study on its interventional effects[D]. Xi’an:Fourth Military Medical University,2015.(in Chinese)
[46]PAN Y Q,ZHENG R,LIU F B,et al. The use of CT scan and stereo lithography apparatus technologies in a canine individualized rib prosthesis[J]. International journal of surgery,2014,12(1):71-75.
[47]边卫国,李涤尘,连芩,等. 多孔预置管道股骨头坏死髓芯植入体的设计与制造[J]. 生物医学,2011,28(5):961-967.
BIAN W G,LI D C,LIAN Q,et al. Design and fabrication of porous core implant with preset channel network for osteonecrosis of the femoral head[J]. Hans journal of biomedicine,2011,28(5):961-967.(in Chinese)
[48]张嘉宇,米雪,刘勤,等. 三维打印组织工程骨支架计算机辅助建模及快速成型技术[J]. 口腔医学研究,2013,29(12):1 097-1 101.
ZHANG J Y,MI X,LIU Q,et al. A technique of CAD model design and rapid prototyping and manufacturing-3D printing tissue engineering bone[J]. Journal of oral science research,2013,29(12):1 097-1 101.(in Chinese)[49]SALMORIA G V,CARDENUTO M R. PCL/Ibuprofen implants fabricated by selective laser sintering for orbital repair[J]. Procedia cirp,2016,49:188-192.
[50]唐通鸣,张政,邓佳文,等. 基于FDM的3D打印技术研究现状与发展趋势[J]. 化工新型材料,2015,43(6):228-234.
TANG T M,ZHANG Z,DENG J W,et al. Research status and trend of 3D printing technology based on FDM[J]. New chemical materials,2015,43(6):228-234.(in Chinese)
[51]STEFAN L,SENAN C,VALERIE B,et al. Fabrication,mechanical and in vivo performance of polycaprolactone/tricalcium phosphate composite scaffolds[J]. Acta biomaterialia,2012,8(9):3 446-3 456.
[52]韩曼曼,乌日开西-艾依提,滕勇,等. 3D打印技术在足部骨折辅助手术中的应用研究[J]. 机械设计与制造,2016(10):36-40.
HAN M M,WURIKAIXI A Y T,TENG Y,et al. Application of 3D printing technology in the foot fracture-assisted surgery[J]. Machinery design and manufacture,2016(10):36-40.(in Chinese)

Memo

Memo:
-
Last Update: 1900-01-01