|Table of Contents|

Chaotic Analysis and Synchronization Control of Fractional OrderPower System with the Disturbance of Electromagnetic Power(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2017年01期
Page:
18-
Research Field:
电气工程
Publishing date:

Info

Title:
Chaotic Analysis and Synchronization Control of Fractional OrderPower System with the Disturbance of Electromagnetic Power
Author(s):
Peng GuangyaMin FuhongHuang WendiYe BiaomingDou Yiping
School of Electrical and Automation Engineering,Nanjing Normal University,Nanjing 210042,China
Keywords:
chaotic oscillationfractional order power systemangle instabilitysynchronization control
PACS:
TP391.9
DOI:
10.3969/j.issn.1672-1292.2017.01.003
Abstract:
Chaotic oscillation is an inherent phenomenon of nonlinear power system. However,when the operation conditions in power system become complicated,the integer-order system models have not fully met the demands of research needs. In this paper,the basic dynamic properties of the fractional-order power system are investigated with the disturbance of electromagnetic power through the bifurcation diagram,Lyapunov exponent spectrum and Poincaré section. In the case of fractional-order power system,the lowest order at which chaos exists is observed. With the disturbance amplitude of electromagnetic power and the frequency factor varying,this power system shows rich dynamic behaviors characterized as period-doubling bifurcation transferring to chaos and angle instability. Based on the double parameters mapping,the regions are divided into the domains of periodic motion,chaos and angle instability. Due to the route to chaos appearing before the angle instability,the control method which can eliminate the chaos should be designed to avoid the harm of angle instability in power system. Therefore,a nonlinear controller which meets the stability requirement is designed to realize the synchronization of the fractional-order chaotic power system. Simulation results verify the effectiveness of the proposed methods,and provide theoretical references for the secure and stable operation of power system.

References:

[1] PRAPROST K L,LOPARO K A. A stability theory for constrained dynamic systems with applications to electric power systems[J]. American control conference,1996,2(11):1 605-1 617.
[2]赵晓伟,吕思昕,谢欢,等. 电力系统低频振荡综述[J]. 华北电力技术,2015(3):34-37.
ZHAO X W,LYU S X,XIE H,et al. A survey of power system low frequency oscillation[J]. North China electric power,2015(3):34-37.(in Chinese)
[3]杨珺,王雅光,孙秋野,等. 智能电网的失稳与混沌[J]. 东北大学学报(自然科学版),2016,37(1):6-10.
YANG J,WANG Y G,SUN Q Y,et al. Instability and chaos of smart grid[J]. Journal of Northeastern university(natural science),2016,37(1):6-10.(in Chinese)
[4]薛禹胜. 综合防御由偶然故障演化为电力灾难——北美“8·14”大停电的警示[J]. 电力系统自动化,2003,27(18):1-5.
XUE Y S. The way from a simple contingency to system-wide disaster—Lessons from the eastern interconnection blackout in 2003[J]. Automation of electric power systems,2003,27(18):1-5.(in Chinese)
[5]林伟芳,孙华东,汤涌,等. 巴西“11·10”大停电事故分析及启示[J]. 电力系统自动化,2010,34(7):1-5.
LIN W F,SUN H D,TANG Y,et al. Analysis and lessons of blackout in Brazil power grid on November 10,2009[J]. Automation of electric power systems,2010,34(7):1-5.(in Chinese)
[6]倪骏康,刘崇新,庞霞,等. 电力系统混沌振荡的等效快速终端模糊滑模控制[J]. 物理学报,2013,62(19):99-105.
NI J K,LIU C X,PANG X,et al. Fuzzy fast terminal sliding mode controller using an equivalent control for chaotic oscillation in power system[J]. Acta physica sinica,2013,62(19):99-105.(in Chinese)
[7]QIN Y H,LUO X S. Random-phase-induced chaos in power systems[J]. Chinese physics B,2010,19(5):050511.
[8]董世勇,鲍海,魏哲,等. 双机电力系统中混沌振荡阀值的计算与仿真[J]. 中国电机工程学报,2010,30(19):58-63.
DONG S Y,BAO H,WEI Z,et al. Calculations and simulations of the chaotic oscillation threshold in daul-unit systems[J]. Proceedings of the CSEE,2010,30(19):58-63.(in Chinese)
[9]MIN F H,WANG Y D,PENG G Y,et al. Bifurcations,chaos and adaptive backstepping sliding mode control of a power system with excitation limitation[J]. Aip advances,2016,6(8):p681-295.
[10]MA M L,MIN F H. Bifurcation behavior and coexisting motions in a time-delayed power system[J]. Chinese physics B,2015,24(3):78-86.
[11]王晓东,陈予恕. 一类电力系统的分岔和奇异性分析[J]. 振动与冲击,2014,33(4):1-6
WANG X D,CHEN Y S. Bifurcation and singular analysis for a class of power systems[J]. Journal of vibration and shock,2014,33(4):1-6.(in Chinese)
[12]LIU X J,HONG L. Chaos and adaptive synchronizations in fractional-order systems[J]. International journal of bifurcation and chaos,2013,23(11):43-56.
[13]高远,范健文,罗文广,等. 分数阶永磁同步电机的混沌运动及其控制研究[J]. 武汉理工大学学报,2012,34(7):134-140.
GAO Y,FAN J W,LUO W G,et al. Chaos in the fractional order permanent magnet synchronous motor and its control[J]. Journal of Wuhan university of technology,2012,34(7):134-140.(in Chinese)
[14]谭文,张敏,李志攀,等. 分数阶互联电力系统混沌振荡及其同步控制[J]. 湖南科技大学学报(自然科学版),2011,26(2):74-78.
TAN W,ZHANG M,LI Z P. Chaotic oscillation of interconnected power system and its synchronization[J]. Journal of Hunan university of science and technology(natural science edition),2011,26(2):74-78.(in Chinese)
[15]MATIGNON D. Stability results for fractional differential equations with applications to control processing[J]. Computational engineering in systerns applications,1997(2):963-968.
[16]黄雯迪,闵富红. 单一驱动多响应分数阶混沌系统的完全同步[J]. 南京师范大学学报(工程技术版),2015,15(2):1-8.
HUANG W D,MIN F H. Complete synchronization of single-drive and multiple-response fractional-order chaotic system[J]. Journal of Nanjing normal university(engineering and technology edition),2015,15(2):1-8.(in Chinese)

Memo

Memo:
-
Last Update: 1900-01-01