|Table of Contents|

Research on Micro Inertial Positioning SystemBased on Adaptive Zero Velocity Updating(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2017年04期
Page:
14-
Research Field:
电气与电子工程
Publishing date:

Info

Title:
Research on Micro Inertial Positioning SystemBased on Adaptive Zero Velocity Updating
Author(s):
Wang YuntaoQian WeixingXu HaoZheng TingtingSong Tianwei
School of Electrical and Automation Engineering,Nanjing Normal University,Nanjing 210042,China
Keywords:
MIMUzero velocity updatinggait phase detectionKalman filter
PACS:
U666.1
DOI:
10.3969/j.issn.1672-1292.2017.04.003
Abstract:
Aiming at the problem that drifts error of micro inertial sensors under the condition of GNSS failure,a zero velocity updating algorithm is proposed to construct a filter model based on velocity information for observation,so as to improve the positioning accuracy. The paper describes the pedestrian gait characteristics. Based on the analysis of pedestrian gait,a zero-velocity detection algorithm with multi-condition constraints is designed by using the acceleration measurement variance,acceleration measurement amplitude and angular velocity measurement energy as measurements,and the adaptive threshold is set for different indoor and outdoor environment. On this basis,a Kalman filter with velocity information is established to estimate and correct the attitude,velocity and position error at zero speed. The experimental results show that the localization correction algorithm can effectively enhance the reliability of zero velocity detection and suppress the accumulation of positioning error,and that the accuracy of the positioning is 1.32% of the travel distance.

References:

[1] 钱伟行,曾庆化,万骏炜,等. 基于人体下肢运动学机理的行人导航方法[J]. 中国惯性技术学报,2015,23(1):24-28.
QIAN W X,ZENG Q H,WAN J W,et al. Pedestrian navigation method based on kinematic mechanism of human lower limb[J]. Journal of Chinese inertial technology,2015,23(1):24-28.(in Chinese)
[2]孙璧文,樊启高,武亚恒,等. 基于PDR/UWB紧耦合的足绑式行人导航技术[J]. 传感器与微系统,2017,36(3):43-48.
SUN B W,FAN Q G,WU Y H,et al. Foot-mounted pedestrian navigation technology based on tightly coupled PDR/UWB[J]. Transducer and microsystem technologies,2017,36(3):43-50.(in Chinese)
[3]LIU Y,LI S L,MU C,et al. Step length estimation based on D-ZUPT for pedestrian dead-reckoning system[J]. Electronics letters,2016,52(11):923-924.
[4]JOHN-OLOF N,ISAAC S,PETER H,et al. Foot-mounted INS for everybody—an open-source embedded implementation[C]//Position,Location and Navigation Symposium(PLANS). Myrtle Beach,SC,USA:IEEE/ION,2012.
[5]BIRD J,ARDEN D. Indoor navigation with foot-mounted strapdown inertial navigation and magnetic sensors[J]. IEEE wireless communications,2011,18(2):28-35.
[6]张新喜,张嵘,郭美凤,等. 足绑式行人导航偏航角误差自观测算法[J]. 中国惯性技术学报,2015,23(4):457-466.
ZHANG X X,ZHANG R,GUO M F,et al. Yaw error self-observation algorithm for pedestrian navigation via foot-mounted inertial navigation system[J]. Journal of Chinese inertial technology,2015,23(4):457-466.(in Chinese)
[7]FELIPE O S,ELDER M H,WALDEMAR C L F. Error analysis of analytical coarse alignment formulations for stationary SINS[J]. IEEE transactions on aerospace and electronic systems,2016,52(4):1 777-1 796.
[8]ABDELMOUMEN N,ZAKARIA K,JORG B,et al. Step detection for ZUPT-aided inertial pedestrian navigation system using foot-mounted permanent magnet[J]. IEEE sensors journal,2016,16(17):6 766-6 773.
[9]GHAZALEH P,NASSER M,ARNE L,et al. Continuous hidden markov model for pedestrian activity classification and gait analysis[J]. IEEE transactions on instrumentation and measurement,2013,62(5):1 073-1 083.
[10]张晓东. 基于MEMS惯性器件的个人导航系统研究[D]. 北京:北京工业大学,2015.
ZHANG X D. Study on personal navigation system based on MEMS inertial devices[D]. Beijing:Beijing University of Technology,2015.(in Chinese)
[11]田晓春,陈家斌,韩勇强,等. 多条件约束的行人导航零速区间检测算法[J]. 中国惯性技术学报,2016,24(1):1-5.
TIAN X C,CHEN J B,HAN Y Q,et al. Zero-velocity interval detection algorithm with multi-condition constraint for pedestrian navigation[J]. Journal of Chinese inertial technology,2016,24(1):1-5.(in Chinese)
[12]YUAN Z,NASER E S. Tightly-coupled integration of WiFi and MEMS sensors on handheld devices for indoor pedestrian navigation[J]. IEEE sensors journal,2016,16(1):224-234.

Memo

Memo:
-
Last Update: 2017-12-30